Fréchet algebra

In mathematics, especially functional analysis, a Fréchet algebra, named after Maurice René Fréchet, is an associative algebra A {\displaystyle A} over the real or complex numbers that at the same time is also a (locally convex) Fréchet space. The multiplication operation ( a , b ) a b {\displaystyle (a,b)\mapsto a*b} for a , b A {\displaystyle a,b\in A} is required to be jointly continuous. If { n } n = 0 {\displaystyle \{\|\cdot \|_{n}\}_{n=0}^{\infty }} is an increasing family[a] of seminorms for the topology of A {\displaystyle A} , the joint continuity of multiplication is equivalent to there being a constant C n > 0 {\displaystyle C_{n}>0} and integer m n {\displaystyle m\geq n} for each n {\displaystyle n} such that a b n C n a m b m {\displaystyle \left\|ab\right\|_{n}\leq C_{n}\left\|a\right\|_{m}\left\|b\right\|_{m}} for all a , b A {\displaystyle a,b\in A} .[b] Fréchet algebras are also called B0-algebras.[1]

A Fréchet algebra is m {\displaystyle m} -convex if there exists such a family of semi-norms for which m = n {\displaystyle m=n} . In that case, by rescaling the seminorms, we may also take C n = 1 {\displaystyle C_{n}=1} for each n {\displaystyle n} and the seminorms are said to be submultiplicative: a b n a n b n {\displaystyle \|ab\|_{n}\leq \|a\|_{n}\|b\|_{n}} for all a , b A . {\displaystyle a,b\in A.} [c] m {\displaystyle m} -convex Fréchet algebras may also be called Fréchet algebras.[2]

A Fréchet algebra may or may not have an identity element 1 A {\displaystyle 1_{A}} . If A {\displaystyle A} is unital, we do not require that 1 A n = 1 , {\displaystyle \|1_{A}\|_{n}=1,} as is often done for Banach algebras.

Properties

  • Continuity of multiplication. Multiplication is separately continuous if a k b a b {\displaystyle a_{k}b\to ab} and b a k b a {\displaystyle ba_{k}\to ba} for every a , b A {\displaystyle a,b\in A} and sequence a k a {\displaystyle a_{k}\to a} converging in the Fréchet topology of A {\displaystyle A} . Multiplication is jointly continuous if a k a {\displaystyle a_{k}\to a} and b k b {\displaystyle b_{k}\to b} imply a k b k a b {\displaystyle a_{k}b_{k}\to ab} . Joint continuity of multiplication is part of the definition of a Fréchet algebra. For a Fréchet space with an algebra structure, if the multiplication is separately continuous, then it is automatically jointly continuous.[3]
  • Group of invertible elements. If i n v A {\displaystyle invA} is the set of invertible elements of A {\displaystyle A} , then the inverse map
    { i n v A i n v A u u 1 {\displaystyle {\begin{cases}invA\to invA\\u\mapsto u^{-1}\end{cases}}}
    is continuous if and only if i n v A {\displaystyle invA} is a G δ {\displaystyle G_{\delta }} set.[4] Unlike for Banach algebras, i n v A {\displaystyle invA} may not be an open set. If i n v A {\displaystyle invA} is open, then A {\displaystyle A} is called a Q {\displaystyle Q} -algebra. (If A {\displaystyle A} happens to be non-unital, then we may adjoin a unit to A {\displaystyle A} [d] and work with i n v A + {\displaystyle invA^{+}} , or the set of quasi invertibles[e] may take the place of i n v A {\displaystyle invA} .)
  • Conditions for m {\displaystyle m} -convexity. A Fréchet algebra is m {\displaystyle m} -convex if and only if for every, if and only if for one, increasing family { n } n = 0 {\displaystyle \{\|\cdot \|_{n}\}_{n=0}^{\infty }} of seminorms which topologize A {\displaystyle A} , for each m N {\displaystyle m\in \mathbb {N} } there exists p m {\displaystyle p\geq m} and C m > 0 {\displaystyle C_{m}>0} such that
    a 1 a 2 a n m C m n a 1 p a 2 p a n p , {\displaystyle \|a_{1}a_{2}\cdots a_{n}\|_{m}\leq C_{m}^{n}\|a_{1}\|_{p}\|a_{2}\|_{p}\cdots \|a_{n}\|_{p},}
    for all a 1 , a 2 , , a n A {\displaystyle a_{1},a_{2},\dots ,a_{n}\in A} and n N {\displaystyle n\in \mathbb {N} } .[5] A commutative Fréchet Q {\displaystyle Q} -algebra is m {\displaystyle m} -convex,[6] but there exist examples of non-commutative Fréchet Q {\displaystyle Q} -algebras which are not m {\displaystyle m} -convex.[7]
  • Properties of m {\displaystyle m} -convex Fréchet algebras. A Fréchet algebra is m {\displaystyle m} -convex if and only if it is a countable projective limit of Banach algebras.[8] An element of A {\displaystyle A} is invertible if and only if its image in each Banach algebra of the projective limit is invertible.[f][9][10]

Examples

  • Zero multiplication. If E {\displaystyle E} is any Fréchet space, we can make a Fréchet algebra structure by setting e f = 0 {\displaystyle e*f=0} for all e , f E {\displaystyle e,f\in E} .
  • Smooth functions on the circle. Let S 1 {\displaystyle S^{1}} be the 1-sphere. This is a 1-dimensional compact differentiable manifold, with no boundary. Let A = C ( S 1 ) {\displaystyle A=C^{\infty }(S^{1})} be the set of infinitely differentiable complex-valued functions on S 1 {\displaystyle S^{1}} . This is clearly an algebra over the complex numbers, for pointwise multiplication. (Use the product rule for differentiation.) It is commutative, and the constant function 1 {\displaystyle 1} acts as an identity. Define a countable set of seminorms on A {\displaystyle A} by
    φ n = φ ( n ) , φ A , {\displaystyle \left\|\varphi \right\|_{n}=\left\|\varphi ^{(n)}\right\|_{\infty },\qquad \varphi \in A,}
    where
    φ ( n ) = sup x S 1 | φ ( n ) ( x ) | {\displaystyle \left\|\varphi ^{(n)}\right\|_{\infty }=\sup _{x\in {S^{1}}}\left|\varphi ^{(n)}(x)\right|}
    denotes the supremum of the absolute value of the n {\displaystyle n} th derivative φ ( n ) {\displaystyle \varphi ^{(n)}} .[g] Then, by the product rule for differentiation, we have
    φ ψ n = i = 0 n ( n i ) φ ( i ) ψ ( n i ) i = 0 n ( n i ) φ i ψ n i i = 0 n ( n i ) φ n ψ n = 2 n φ n ψ n , {\displaystyle {\begin{aligned}\|\varphi \psi \|_{n}&=\left\|\sum _{i=0}^{n}{n \choose i}\varphi ^{(i)}\psi ^{(n-i)}\right\|_{\infty }\\&\leq \sum _{i=0}^{n}{n \choose i}\|\varphi \|_{i}\|\psi \|_{n-i}\\&\leq \sum _{i=0}^{n}{n \choose i}\|\varphi \|'_{n}\|\psi \|'_{n}\\&=2^{n}\|\varphi \|'_{n}\|\psi \|'_{n},\end{aligned}}}
    where
    ( n i ) = n ! i ! ( n i ) ! , {\displaystyle {n \choose i}={\frac {n!}{i!(n-i)!}},}
    denotes the binomial coefficient and
    n = max k n k . {\displaystyle \|\cdot \|'_{n}=\max _{k\leq n}\|\cdot \|_{k}.}
    The primed seminorms are submultiplicative after re-scaling by C n = 2 n {\displaystyle C_{n}=2^{n}} .
  • Sequences on N {\displaystyle \mathbb {N} } . Let C N {\displaystyle \mathbb {C} ^{\mathbb {N} }} be the space of complex-valued sequences on the natural numbers N {\displaystyle \mathbb {N} } . Define an increasing family of seminorms on C N {\displaystyle \mathbb {C} ^{\mathbb {N} }} by
    φ n = max k n | φ ( k ) | . {\displaystyle \|\varphi \|_{n}=\max _{k\leq n}|\varphi (k)|.}
    With pointwise multiplication, C N {\displaystyle \mathbb {C} ^{\mathbb {N} }} is a commutative Fréchet algebra. In fact, each seminorm is submultiplicative φ ψ n φ n ψ n {\displaystyle \|\varphi \psi \|_{n}\leq \|\varphi \|_{n}\|\psi \|_{n}} for φ , ψ A {\displaystyle \varphi ,\psi \in A} . This m {\displaystyle m} -convex Fréchet algebra is unital, since the constant sequence 1 ( k ) = 1 , k N {\displaystyle 1(k)=1,k\in \mathbb {N} } is in A {\displaystyle A} .
  • Equipped with the topology of uniform convergence on compact sets, and pointwise multiplication, C ( C ) {\displaystyle C(\mathbb {C} )} , the algebra of all continuous functions on the complex plane C {\displaystyle \mathbb {C} } , or to the algebra H o l ( C ) {\displaystyle \mathrm {Hol} (\mathbb {C} )} of holomorphic functions on C {\displaystyle \mathbb {C} } .
  • Convolution algebra of rapidly vanishing functions on a finitely generated discrete group. Let G {\displaystyle G} be a finitely generated group, with the discrete topology. This means that there exists a set of finitely many elements U = { g 1 , , g n } G {\displaystyle U=\{g_{1},\dots ,g_{n}\}\subseteq G} such that:
    n = 0 U n = G . {\displaystyle \bigcup _{n=0}^{\infty }U^{n}=G.}
    Without loss of generality, we may also assume that the identity element e {\displaystyle e} of G {\displaystyle G} is contained in U {\displaystyle U} . Define a function : G [ 0 , ) {\displaystyle \ell :G\to [0,\infty )} by
    ( g ) = min { n g U n } . {\displaystyle \ell (g)=\min\{n\mid g\in U^{n}\}.}
    Then ( g h ) ( g ) + ( h ) {\displaystyle \ell (gh)\leq \ell (g)+\ell (h)} , and ( e ) = 0 {\displaystyle \ell (e)=0} , since we define U 0 = { e } {\displaystyle U^{0}=\{e\}} .[h] Let A {\displaystyle A} be the C {\displaystyle \mathbb {C} } -vector space
    S ( G ) = { φ : G C | φ d < , d = 0 , 1 , 2 , } , {\displaystyle S(G)={\biggr \{}\varphi :G\to \mathbb {C} \,\,{\biggl |}\,\,\|\varphi \|_{d}<\infty ,\quad d=0,1,2,\dots {\biggr \}},}
    where the seminorms d {\displaystyle \|\cdot \|_{d}} are defined by
    φ d = d φ 1 = g G ( g ) d | φ ( g ) | . {\displaystyle \|\varphi \|_{d}=\|\ell ^{d}\varphi \|_{1}=\sum _{g\in G}\ell (g)^{d}|\varphi (g)|.}
    [i] A {\displaystyle A} is an m {\displaystyle m} -convex Fréchet algebra for the convolution multiplication
    φ ψ ( g ) = h G φ ( h ) ψ ( h 1 g ) , {\displaystyle \varphi *\psi (g)=\sum _{h\in G}\varphi (h)\psi (h^{-1}g),}
    [j] A {\displaystyle A} is unital because G {\displaystyle G} is discrete, and A {\displaystyle A} is commutative if and only if G {\displaystyle G} is Abelian.
  • Non m {\displaystyle m} -convex Fréchet algebras. The Aren's algebra
    A = L ω [ 0 , 1 ] = p 1 L p [ 0 , 1 ] {\displaystyle A=L^{\omega }[0,1]=\bigcap _{p\geq 1}L^{p}[0,1]}
    is an example of a commutative non- m {\displaystyle m} -convex Fréchet algebra with discontinuous inversion. The topology is given by L p {\displaystyle L^{p}} norms
    f p = ( 0 1 | f ( t ) | p d t ) 1 / p , f A , {\displaystyle \|f\|_{p}=\left(\int _{0}^{1}|f(t)|^{p}dt\right)^{1/p},\qquad f\in A,}
    and multiplication is given by convolution of functions with respect to Lebesgue measure on [ 0 , 1 ] {\displaystyle [0,1]} .[11]

Generalizations

We can drop the requirement for the algebra to be locally convex, but still a complete metric space. In this case, the underlying space may be called a Fréchet space[12] or an F-space.[13]

If the requirement that the number of seminorms be countable is dropped, the algebra becomes locally convex (LC) or locally multiplicatively convex (LMC).[14] A complete LMC algebra is called an Arens-Michael algebra.[15]

Open problems

Perhaps the most famous, still open problem of the theory of topological algebras is whether all linear multiplicative functionals on an m {\displaystyle m} -convex Frechet algebra are continuous. The statement that this be the case is known as Michael's Conjecture.[16]

Notes

  1. ^ An increasing family means that for each a A , {\displaystyle a\in A,}
    a 0 a 1 a n {\displaystyle \|a\|_{0}\leq \|a\|_{1}\leq \cdots \leq \|a\|_{n}\leq \cdots } .
  2. ^ Joint continuity of multiplication means that for every absolutely convex neighborhood V {\displaystyle V} of zero, there is an absolutely convex neighborhood U {\displaystyle U} of zero for which U 2 V , {\displaystyle U^{2}\subseteq V,} from which the seminorm inequality follows. Conversely,
    a k b k a b n = a k b k a b k + a b k a b n a k b k a b k n + a b k a b n C n ( a k a m b k m + a m b k b m ) C n ( a k a m b m + a k a m b k b m + a m b k b m ) . {\displaystyle {\begin{aligned}&{}\|a_{k}b_{k}-ab\|_{n}\\&=\|a_{k}b_{k}-ab_{k}+ab_{k}-ab\|_{n}\\&\leq \|a_{k}b_{k}-ab_{k}\|_{n}+\|ab_{k}-ab\|_{n}\\&\leq C_{n}{\biggl (}\|a_{k}-a\|_{m}\|b_{k}\|_{m}+\|a\|_{m}\|b_{k}-b\|_{m}{\biggr )}\\&\leq C_{n}{\biggl (}\|a_{k}-a\|_{m}\|b\|_{m}+\|a_{k}-a\|_{m}\|b_{k}-b\|_{m}+\|a\|_{m}\|b_{k}-b\|_{m}{\biggr )}.\end{aligned}}}
  3. ^ In other words, an m {\displaystyle m} -convex Fréchet algebra is a topological algebra, in which the topology is given by a countable family of submultiplicative seminorms: p ( f g ) p ( f ) p ( g ) , {\displaystyle p(fg)\leq p(f)p(g),} and the algebra is complete.
  4. ^ If A {\displaystyle A} is an algebra over a field k {\displaystyle k} , the unitization A + {\displaystyle A^{+}} of A {\displaystyle A} is the direct sum A k 1 {\displaystyle A\oplus k1} , with multiplication defined as ( a + μ 1 ) ( b + λ 1 ) = a b + μ b + λ a + μ λ 1. {\displaystyle (a+\mu 1)(b+\lambda 1)=ab+\mu b+\lambda a+\mu \lambda 1.}
  5. ^ If a A {\displaystyle a\in A} , then b A {\displaystyle b\in A} is a quasi-inverse for a {\displaystyle a} if a + b a b = 0 {\displaystyle a+b-ab=0} .
  6. ^ If A {\displaystyle A} is non-unital, replace invertible with quasi-invertible.
  7. ^ To see the completeness, let φ k {\displaystyle \varphi _{k}} be a Cauchy sequence. Then each derivative φ k ( l ) {\displaystyle \varphi _{k}^{(l)}} is a Cauchy sequence in the sup norm on S 1 {\displaystyle S^{1}} , and hence converges uniformly to a continuous function ψ l {\displaystyle \psi _{l}} on S 1 {\displaystyle S^{1}} . It suffices to check that ψ l {\displaystyle \psi _{l}} is the l {\displaystyle l} th derivative of ψ 0 {\displaystyle \psi _{0}} . But, using the fundamental theorem of calculus, and taking the limit inside the integral (using uniform convergence), we have
    ψ l ( x ) ψ l ( x 0 ) = lim k ( φ k ( l ) ( x ) φ k ( l ) ( x 0 ) ) = lim k x 0 x φ k ( l + 1 ) ( t ) d t = x 0 x ψ l + 1 ( t ) d t . {\displaystyle {\begin{aligned}&{}\psi _{l}(x)-\psi _{l}(x_{0})\\=&{}\lim _{k\to \infty }\left(\varphi _{k}^{(l)}(x)-\varphi _{k}^{(l)}(x_{0})\right)\\=&{}\lim _{k\to \infty }\int _{x_{0}}^{x}\varphi _{k}^{(l+1)}(t)dt\\=&{}\int _{x_{0}}^{x}\psi _{l+1}(t)dt.\end{aligned}}}
  8. ^ We can replace the generating set U {\displaystyle U} with U U 1 {\displaystyle U\cup U^{-1}} , so that U = U 1 {\displaystyle U=U^{-1}} . Then {\displaystyle \ell } satisfies the additional property ( g 1 ) = ( g ) {\displaystyle \ell (g^{-1})=\ell (g)} , and is a length function on G {\displaystyle G} .
  9. ^ To see that A {\displaystyle A} is Fréchet space, let φ n {\displaystyle \varphi _{n}} be a Cauchy sequence. Then for each g G {\displaystyle g\in G} , φ n ( g ) {\displaystyle \varphi _{n}(g)} is a Cauchy sequence in C {\displaystyle \mathbb {C} } . Define φ ( g ) {\displaystyle \varphi (g)} to be the limit. Then
    g S ( g ) d | φ n ( g ) φ ( g ) | g S ( g ) d | φ n ( g ) φ m ( g ) | + g S ( g ) d | φ m ( g ) φ ( g ) | φ n φ m d + g S ( g ) d | φ m ( g ) φ ( g ) | , {\displaystyle {\begin{aligned}&\sum _{g\in S}\ell (g)^{d}|\varphi _{n}(g)-\varphi (g)|\\&\leq \sum _{g\in S}\ell (g)^{d}|\varphi _{n}(g)-\varphi _{m}(g)|+\sum _{g\in S}\ell (g)^{d}|\varphi _{m}(g)-\varphi (g)|\\&\leq \|\varphi _{n}-\varphi _{m}\|_{d}+\sum _{g\in S}\ell (g)^{d}|\varphi _{m}(g)-\varphi (g)|,\end{aligned}}}
    where the sum ranges over any finite subset S {\displaystyle S} of G {\displaystyle G} . Let ϵ > 0 {\displaystyle \epsilon >0} , and let K ϵ > 0 {\displaystyle K_{\epsilon }>0} be such that φ n φ m d < ϵ {\displaystyle \|\varphi _{n}-\varphi _{m}\|_{d}<\epsilon } for m , n K ϵ {\displaystyle m,n\geq K_{\epsilon }} . By letting m {\displaystyle m} run, we have
    g S ( g ) d | φ n ( g ) φ ( g ) | < ϵ {\displaystyle \sum _{g\in S}\ell (g)^{d}|\varphi _{n}(g)-\varphi (g)|<\epsilon }
    for n K ϵ {\displaystyle n\geq K_{\epsilon }} . Summing over all of G {\displaystyle G} , we therefore have φ n φ d < ϵ {\displaystyle \left\|\varphi _{n}-\varphi \right\|_{d}<\epsilon } for n K ϵ {\displaystyle n\geq K_{\epsilon }} . By the estimate
    g S ( g ) d | φ ( g ) | g S ( g ) d | φ n ( g ) φ ( g ) | + g S ( g ) d | φ n ( g ) | φ n φ d + φ n d , {\displaystyle {\begin{aligned}&{}\sum _{g\in S}\ell (g)^{d}|\varphi (g)|\\&{}\leq \sum _{g\in S}\ell (g)^{d}|\varphi _{n}(g)-\varphi (g)|+\sum _{g\in S}\ell (g)^{d}|\varphi _{n}(g)|\\&{}\leq \|\varphi _{n}-\varphi \|_{d}+\|\varphi _{n}\|_{d},\end{aligned}}}
    we obtain φ d < {\displaystyle \|\varphi \|_{d}<\infty } . Since this holds for each d N {\displaystyle d\in \mathbb {N} } , we have φ A {\displaystyle \varphi \in A} and φ n φ {\displaystyle \varphi _{n}\to \varphi } in the Fréchet topology, so A {\displaystyle A} is complete.
  10. ^
    φ ψ d g G ( h G ( g ) d | φ ( h ) | | ψ ( h 1 g ) | ) g , h G ( ( h ) + ( h 1 g ) ) d | φ ( h ) | | ψ ( h 1 g ) | = i = 0 d ( d i ) ( g , h G | i φ ( h ) | | d i ψ ( h 1 g ) | ) = i = 0 d ( d i ) ( h G | i φ ( h ) | ) ( g G | d i ψ ( g ) | ) = i = 0 d ( d i ) φ i ψ d i 2 d φ d ψ d {\displaystyle {\begin{aligned}&\|\varphi *\psi \|_{d}\\&\leq \sum _{g\in G}\left(\sum _{h\in G}\ell (g)^{d}|\varphi (h)|\left|\psi (h^{-1}g)\right|\right)\\&\leq \sum _{g,h\in G}\left(\ell (h)+\ell \left(h^{-1}g\right)\right)^{d}|\varphi (h)|\left|\psi (h^{-1}g)\right|\\&=\sum _{i=0}^{d}{d \choose i}\left(\sum _{g,h\in G}\left|\ell ^{i}\varphi (h)\right|\left|\ell ^{d-i}\psi (h^{-1}g)\right|\right)\\&=\sum _{i=0}^{d}{d \choose i}\left(\sum _{h\in G}\left|\ell ^{i}\varphi (h)\right|\right)\left(\sum _{g\in G}\left|\ell ^{d-i}\psi (g)\right|\right)\\&=\sum _{i=0}^{d}{d \choose i}\|\varphi \|_{i}\|\psi \|_{d-i}\\&\leq 2^{d}\|\varphi \|'_{d}\|\psi \|'_{d}\end{aligned}}}

Citations

  1. ^ Mitiagin, Rolewicz & Żelazko 1962; Żelazko 2001.
  2. ^ Husain 1991; Żelazko 2001.
  3. ^ Waelbroeck 1971, Chapter VII, Proposition 1; Palmer 1994, § {\displaystyle \S } 2.9.
  4. ^ Waelbroeck 1971, Chapter VII, Proposition 2.
  5. ^ Mitiagin, Rolewicz & Żelazko 1962, Lemma 1.2.
  6. ^ Żelazko 1965, Theorem 13.17.
  7. ^ Żelazko 1994, pp. 283–290.
  8. ^ Michael 1952, Theorem 5.1.
  9. ^ Michael 1952, Theorem 5.2.
  10. ^ See also Palmer 1994, Theorem 2.9.6.
  11. ^ Fragoulopoulou 2005, Example 6.13 (2).
  12. ^ Waelbroeck 1971.
  13. ^ Rudin 1973, 1.8(e).
  14. ^ Michael 1952; Husain 1991.
  15. ^ Fragoulopoulou 2005, Chapter 1.
  16. ^ Michael 1952, § {\displaystyle \S } 12, Question 1; Palmer 1994, § {\displaystyle \S } 3.1.

Sources

  • Fragoulopoulou, Maria (2005). Topological Algebras with Involution. North-Holland Mathematics Studies. Vol. 200. Amsterdam: Elsevier B.V. doi:10.1016/S0304-0208(05)80031-3. ISBN 978-044452025-8.
  • Husain, Taqdir (1991). Orthogonal Schauder Bases. Pure and Applied Mathematics. Vol. 143. New York City: Marcel Dekker. ISBN 0-8247-8508-8.
  • Michael, Ernest A. (1952). Locally Multiplicatively-Convex Topological Algebras. Memoirs of the American Mathematical Society. Vol. 11. MR 0051444.
  • Mitiagin, B.; Rolewicz, S.; Żelazko, W. (1962). "Entire functions in B0-algebras". Studia Mathematica. 21 (3): 291–306. doi:10.4064/sm-21-3-291-306. MR 0144222.
  • Palmer, T.W. (1994). Banach Algebras and the General Theory of *-algebras, Volume I: Algebras and Banach Algebras. Encyclopedia of Mathematics and its Applications. Vol. 49. New York City: Cambridge University Press. ISBN 978-052136637-3.
  • Rudin, Walter (1973). Functional Analysis. Series in Higher Mathematics. New York City: McGraw-Hill Book. 1.8(e). ISBN 978-007054236-5 – via Internet Archive.
  • Waelbroeck, Lucien (1971). Topological Vector Spaces and Algebras. Lecture Notes in Mathematics. Vol. 230. doi:10.1007/BFb0061234. ISBN 978-354005650-8. MR 0467234.
  • Żelazko, W. (1965). "Metric generalizations of Banach algebras". Rozprawy Mat. (Dissertationes Math.). 47. Theorem 13.17. MR 0193532.
  • Żelazko, W. (1994). "Concerning entire functions in B0-algebras". Studia Mathematica. 110 (3): 283–290. doi:10.4064/sm-110-3-283-290. MR 1292849.
  • Żelazko, W. (2001) [1994]. "Fréchet algebra". Encyclopedia of Mathematics. EMS Press.