Woodall number

In number theory, a Woodall number (Wn) is any natural number of the form

W n = n 2 n 1 {\displaystyle W_{n}=n\cdot 2^{n}-1}

for some natural number n. The first few Woodall numbers are:

1, 7, 23, 63, 159, 383, 895, … (sequence A003261 in the OEIS).

History

Woodall numbers were first studied by Allan J. C. Cunningham and H. J. Woodall in 1917,[1] inspired by James Cullen's earlier study of the similarly defined Cullen numbers.

Woodall primes

Unsolved problem in mathematics:

Are there infinitely many Woodall primes?

Woodall numbers that are also prime numbers are called Woodall primes; the first few exponents n for which the corresponding Woodall numbers Wn are prime are 2, 3, 6, 30, 75, 81, 115, 123, 249, 362, 384, ... (sequence A002234 in the OEIS); the Woodall primes themselves begin with 7, 23, 383, 32212254719, ... (sequence A050918 in the OEIS).

In 1976 Christopher Hooley showed that almost all Cullen numbers are composite.[2] In October 1995, Wilfred Keller published a paper discussing several new Cullen primes and the efforts made to factorise other Cullen and Woodall numbers. Included in that paper is a personal communication to Keller from Hiromi Suyama, asserting that Hooley's method can be reformulated to show that it works for any sequence of numbers n · 2n + a + b, where a and b are integers, and in particular, that almost all Woodall numbers are composite.[3] It is an open problem whether there are infinitely many Woodall primes. As of October 2018[update], the largest known Woodall prime is 17016602 × 217016602 − 1.[4] It has 5,122,515 digits and was found by Diego Bertolotti in March 2018 in the distributed computing project PrimeGrid.[5]

Restrictions

Starting with W4 = 63 and W5 = 159, every sixth Woodall number is divisible by 3; thus, in order for Wn to be prime, the index n cannot be congruent to 4 or 5 (modulo 6). Also, for a positive integer m, the Woodall number W2m may be prime only if 2m + m is prime. As of January 2019, the only known primes that are both Woodall primes and Mersenne primes are W2 = M3 = 7, and W512 = M521.

Divisibility properties

Like Cullen numbers, Woodall numbers have many divisibility properties. For example, if p is a prime number, then p divides

W(p + 1) / 2 if the Jacobi symbol ( 2 p ) {\displaystyle \left({\frac {2}{p}}\right)} is +1 and
W(3p − 1) / 2 if the Jacobi symbol ( 2 p ) {\displaystyle \left({\frac {2}{p}}\right)} is −1.[citation needed]

Generalization

A generalized Woodall number base b is defined to be a number of the form n × bn − 1, where n + 2 > b; if a prime can be written in this form, it is then called a generalized Woodall prime.

The smallest value of n such that n × bn − 1 is prime for b = 1, 2, 3, ... are[6]

3, 2, 1, 1, 8, 1, 2, 1, 10, 2, 2, 1, 2, 1, 2, 167, 2, 1, 12, 1, 2, 2, 29028, 1, 2, 3, 10, 2, 26850, 1, 8, 1, 42, 2, 6, 2, 24, 1, 2, 3, 2, 1, 2, 1, 2, 2, 140, 1, 2, 2, 22, 2, 8, 1, 2064, 2, 468, 6, 2, 1, 362, 1, 2, 2, 6, 3, 26, 1, 2, 3, 20, 1, 2, 1, 28, 2, 38, 5, 3024, 1, 2, 81, 858, 1, 2, 3, 2, 8, 60, 1, 2, 2, 10, 5, 2, 7, 182, 1, 17782, 3, ... (sequence A240235 in the OEIS)

As of November 2021[update], the largest known generalized Woodall prime with base greater than 2 is 2740879 × 322740879 − 1.[7]

See also

References

  1. ^ Cunningham, A. J. C; Woodall, H. J. (1917), "Factorisation of Q = ( 2 q q ) {\displaystyle Q=(2^{q}\mp q)} and ( q 2 q 1 ) {\displaystyle (q\cdot {2^{q}}\mp 1)} ", Messenger of Mathematics, 47: 1–38.
  2. ^ Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). Recurrence sequences. Mathematical Surveys and Monographs. Vol. 104. Providence, RI: American Mathematical Society. p. 94. ISBN 0-8218-3387-1. Zbl 1033.11006.
  3. ^ Keller, Wilfrid (January 1995). "New Cullen primes". Mathematics of Computation. 64 (212): 1739. doi:10.1090/S0025-5718-1995-1308456-3. ISSN 0025-5718. Keller, Wilfrid (December 2013). "Wilfrid Keller". www.fermatsearch.org. Hamburg. Archived from the original on February 28, 2020. Retrieved October 1, 2020.
  4. ^ "The Prime Database: 8508301*2^17016603-1", Chris Caldwell's The Largest Known Primes Database, retrieved March 24, 2018
  5. ^ PrimeGrid, Announcement of 17016602*2^17016602 - 1 (PDF), retrieved April 1, 2018
  6. ^ List of generalized Woodall primes base 3 to 10000
  7. ^ "The Top Twenty: Generalized Woodall". primes.utm.edu. Retrieved 20 November 2021.

Further reading

  • Guy, Richard K. (2004), Unsolved Problems in Number Theory (3rd ed.), New York: Springer Verlag, pp. section B20, ISBN 0-387-20860-7.
  • Keller, Wilfrid (1995), "New Cullen Primes" (PDF), Mathematics of Computation, 64 (212): 1733–1741, doi:10.2307/2153382, JSTOR 2153382.
  • Caldwell, Chris, "The Top Twenty: Woodall Primes", The Prime Pages, retrieved December 29, 2007.

External links

  • Chris Caldwell, The Prime Glossary: Woodall number, and The Top Twenty: Woodall, and The Top Twenty: Generalized Woodall, at The Prime Pages.
  • Weisstein, Eric W. "Woodall number". MathWorld.
  • Steven Harvey, List of Generalized Woodall primes.
  • Paul Leyland, Generalized Cullen and Woodall Numbers
  • v
  • t
  • e
Prime number classes
By formula
  • Fermat (22n + 1)
  • Mersenne (2p − 1)
  • Double Mersenne (22p−1 − 1)
  • Wagstaff (2p + 1)/3
  • Proth (k·2n + 1)
  • Factorial (n! ± 1)
  • Primorial (pn# ± 1)
  • Euclid (pn# + 1)
  • Pythagorean (4n + 1)
  • Pierpont (2m·3n + 1)
  • Quartan (x4 + y4)
  • Solinas (2m ± 2n ± 1)
  • Cullen (n·2n + 1)
  • Woodall (n·2n − 1)
  • Cuban (x3 − y3)/(x − y)
  • Leyland (xy + yx)
  • Thabit (3·2n − 1)
  • Williams ((b−1)·bn − 1)
  • Mills (A3n)
By integer sequenceBy propertyBase-dependentPatterns
  • Twin (p, p + 2)
  • Bi-twin chain (n ± 1, 2n ± 1, 4n ± 1, …)
  • Triplet (p, p + 2 or p + 4, p + 6)
  • Quadruplet (p, p + 2, p + 6, p + 8)
  • k-tuple
  • Cousin (p, p + 4)
  • Sexy (p, p + 6)
  • Chen
  • Sophie Germain/Safe (p, 2p + 1)
  • Cunningham (p, 2p ± 1, 4p ± 3, 8p ± 7, ...)
  • Arithmetic progression (p + a·n, n = 0, 1, 2, 3, ...)
  • Balanced (consecutive p − n, p, p + n)
By sizeComplex numbersComposite numbersRelated topicsFirst 60 primes
  • 2
  • 3
  • 5
  • 7
  • 11
  • 13
  • 17
  • 19
  • 23
  • 29
  • 31
  • 37
  • 41
  • 43
  • 47
  • 53
  • 59
  • 61
  • 67
  • 71
  • 73
  • 79
  • 83
  • 89
  • 97
  • 101
  • 103
  • 107
  • 109
  • 113
  • 127
  • 131
  • 137
  • 139
  • 149
  • 151
  • 157
  • 163
  • 167
  • 173
  • 179
  • 181
  • 191
  • 193
  • 197
  • 199
  • 211
  • 223
  • 227
  • 229
  • 233
  • 239
  • 241
  • 251
  • 257
  • 263
  • 269
  • 271
  • 277
  • 281
  • v
  • t
  • e
Classes of natural numbers
Of the form a × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Numeral system-dependent numbers
Arithmetic functions
and dynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via a sieve
  • Mathematics portal