Integral inpropio

Kalkuluan, funtzio baten integral inpropio bat integral zehatz baten limitea da, integrazio-tartearen mutur bateko edo bietako puntuak bere eremuan ez dagoen zenbaki batera hurbiltzen direnean, {\displaystyle \infty } -ra edo {\displaystyle -\infty } -ra. Gainera, integral definitu bat inpropioa da integral definituaren funtzio integratua integrazio-tarte osoan jarraitua ez denean. Bi egoerak ere gerta daitezke.

Muga infinituko integral inpropioak

Izan bedi f : [ a , b ) {\displaystyle f:[a,b)\rightarrow \Re } eta f {\displaystyle f} [ a , t ] n {\displaystyle [a,t]-n} integragarria (t>a zanik), lim t a f ( x ) d x {\displaystyle \exists \lim _{t\to \infty }\int _{a}^{\infty }f(x)dx} , a f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)dx} integral inpropioa konbergentea da.

a f ( x ) d x = lim t a t f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)dx=\lim _{t\to \infty }\int _{a}^{t}f(x)dx}


Izan bedi f : ( , ) {\displaystyle f:(-\infty ,\infty )\rightarrow \Re } eta f {\displaystyle f} [ t 1 , t 2 ] n {\displaystyle [t_{1},t_{2}]-n} integragarria. Orduan, f ( x ) d x {\displaystyle \int _{-\infty }^{\infty }f(x)dx} integral inpropioa konbergentea da a f ( x ) d x {\displaystyle \int _{-\infty }^{a}f(x)dx} eta a f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)dx} konbergenteak direnean. Kasu horretan, f ( x ) d x = a f ( x ) d x + a f ( x ) d x {\displaystyle \int _{-\infty }^{\infty }f(x)dx=\int _{-\infty }^{a}f(x)dx+\int _{a}^{\infty }f(x)dx} .

Orokorrean,

1 1 x α d x = { k o n b e r g e n t e a , α > 1 d i b e r g e n t e a , α 1 {\displaystyle \int _{1}^{\infty }{1 \over x^{\alpha }}dx={\begin{cases}konbergentea,&\alpha >1\\dibergentea,&\alpha \leq 1\end{cases}}}

Funtzio ez-negatiboen integral inpropioen konbergentzia irizpideak

Konbergentzia irizpidea

Izan bitez f , g : [ a , ) {\displaystyle f,g:[a,\infty )\rightarrow \Re } funtzioa integragarriak [ a , t ] n {\displaystyle [a,t]-n} (t>a zanik). Suposatu 0 f ( x ) g ( x ) {\displaystyle 0\leq f(x)\leq g(x)} x a {\displaystyle \forall x\geq a} . Orduan,

a g ( x ) d x {\displaystyle \int _{a}^{\infty }g(x)dx} konbergentea a f ( x ) d x {\displaystyle \Rightarrow \int _{a}^{\infty }f(x)dx} konbergentea

a f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)dx} dibergentea a g ( x ) d x {\displaystyle \Rightarrow \int _{a}^{\infty }g(x)dx} dibergentea

Froga

0 f ( x ) g ( x ) {\displaystyle 0\leq f(x)\leq g(x)} bada x a {\displaystyle \forall x\geq a}

0 a t f ( x ) d x a t g ( x ) d x {\displaystyle \Rightarrow 0\leq \int _{a}^{t}f(x)dx\leq \int _{a}^{t}g(x)dx} . Beraz, 0 lim t a t f ( x ) d x lim t a t g ( x ) d x {\displaystyle 0\leq \lim _{t\to \infty }\int _{a}^{t}f(x)dx\leq \lim _{t\to \infty }\int _{a}^{t}g(x)dx}

{\displaystyle \boxtimes }

Adibideak

Izan bedi 1 1 x 5 + 7 d x {\displaystyle \int _{1}^{\infty }{1 \over x^{5}+7}dx} integral inpropioa.

0 1 x 5 + 7 1 x 5 {\displaystyle 0\leq {1 \over x^{5}+7}\leq {1 \over x^{5}}} , x 1 {\displaystyle x\geq 1} .

1 1 x 5 d x {\displaystyle \int _{1}^{\infty }{1 \over x^{5}}dx} , α = 5 > 1 {\displaystyle \alpha =5>1\Longrightarrow } konbergentea k o n p . i r i z p 1 1 x 5 d x 1 1 x 5 + 7 d x {\displaystyle {\xrightarrow[{}]{konp.irizp}}\int _{1}^{\infty }{1 \over x^{5}}dx\geq \int _{1}^{\infty }{1 \over x^{5}+7}dx} konbergentea.

Limitearen irizpidea

Izan bitez f , g : [ a , ) {\displaystyle f,g:[a,\infty )\rightarrow \Re } funtzioa integragarriak [ a , t ] n {\displaystyle [a,t]-n} . Suposatu 0 f ( x ) {\displaystyle 0\leq f(x)} eta 0 < g ( x ) {\displaystyle 0<g(x)} x a {\displaystyle \forall x\geq a} eta lim x ( f ( x ) g ( x ) ) = l {\displaystyle \lim _{x\to \infty }{\biggl (}{f(x) \over g(x)}{\biggr )}=l} . Orduan,

(i) l 0 , {\displaystyle l\neq 0,\infty }

a f ( x ) d x {\displaystyle \int _{a}^{\infty }f(x)dx} konbergentea a g ( x ) d x {\displaystyle \Rightarrow \int _{a}^{\infty }g(x)dx} konbergentea


(ii) l = 0 {\displaystyle l=0}

a g ( x ) d x {\displaystyle \int _{a}^{\infty }g(x)dx} konbergentea a f ( x ) d x {\displaystyle \Rightarrow \int _{a}^{\infty }f(x)dx} konbergentea


(iii) l = {\displaystyle l=\infty }

a g ( x ) d x {\displaystyle \int _{a}^{\infty }g(x)dx} dibergentea a f ( x ) d x {\displaystyle \Rightarrow \int _{a}^{\infty }f(x)dx} dibergentea

Froga

(i) l 0 , {\displaystyle l\neq 0,\infty }

lim x ( f ( x ) g ( x ) ) = l [ ε > 0 : M > 0 , x > M | f ( x ) g ( x ) l | < ε ] {\displaystyle \lim _{x\to \infty }\left({\frac {f(x)}{g(x)}}\right)=l\Longleftrightarrow \left[\forall \varepsilon >0:\exists M>0,x>M\Rightarrow \left\vert {\frac {f(x)}{g(x)}}-l\right\vert <\varepsilon \right]}

Kasu partikularra, ε = l 2 {\displaystyle \varepsilon ={l \over 2}} . Orduan,

| f ( x ) g ( x ) l | < l 2 l 2 < f ( x ) g ( x ) l < l 2 l 2 < f ( x ) g ( x ) < 3 l 2 0 l 2 g ( x ) f ( x ) 3 l 2 f ( x ) {\displaystyle \left\vert {\frac {f(x)}{g(x)}}-l\right\vert <{l \over 2}\Longleftrightarrow -{l \over 2}<{\frac {f(x)}{g(x)}}-l<{l \over 2}\Longleftrightarrow {l \over 2}<{\frac {f(x)}{g(x)}}<{3l \over 2}\Longleftrightarrow 0\leq {l \over 2}g(x)\leq f(x)\leq {3l \over 2}f(x)}


(ii) l = 0 {\displaystyle l=0}

lim x ( f ( x ) g ( x ) ) = [ k > 0 : M > 0 , x > M | f ( x ) g ( x ) | < k ] {\displaystyle \lim _{x\to \infty }\left({\frac {f(x)}{g(x)}}\right)=\infty \Longleftrightarrow \left[\forall k>0:\exists M>0,x>M\Rightarrow \left\vert {\frac {f(x)}{g(x)}}\right\vert <k\right]}

Kasu partikularra, k=1:

| f ( x ) g ( x ) | < 1 f ( x ) g ( x ) < 1 f ( x ) < g ( x ) > 0 {\displaystyle \left\vert {\frac {f(x)}{g(x)}}\right\vert <1\Longrightarrow {\frac {f(x)}{g(x)}}<1\Longrightarrow f(x)<g(x)>0}

0 f ( x ) d x {\displaystyle \int _{0}^{\infty }f(x)dx} k o n b e r g e n t e a a g ( x ) d x {\displaystyle konbergentea\Longleftarrow \int _{a}^{\infty }g(x)dx} k o n b e r g e n t e a {\displaystyle konbergentea}

{\displaystyle \boxtimes }

Adibideak

2 x + 1 x 3 d x {\displaystyle \int _{2}^{\infty }{x+1 \over {\sqrt {x^{3}}}}dx} integral inpropioaren konbergentzia aztertu.


lim x x + 1 x 3 x + 1 x = lim x ( x + 1 ) x x x = 1 {\displaystyle \lim _{x\to \infty }{{x+1 \over {\sqrt {x^{3}}}} \over {x+1 \over {\sqrt {x}}}}=\lim _{x\to \infty }{(x+1){\sqrt {x}} \over x{\sqrt {x}}}=1\Longrightarrow } f(x) eta g(x) bera izaera bera dute.

Orduan,

1 1 x d x {\displaystyle \int _{1}^{\infty }{1 \over {\sqrt {x}}}dx} d i b e r g e n t e a ( α = 1 / 2 < 1 ) {\displaystyle dibergentea(\alpha =\operatorname {1} /\operatorname {2} <1)} a x + 1 x 3 d x {\displaystyle \Longrightarrow {\displaystyle \int _{a}^{\infty }{x+1 \over {\sqrt {x^{3}}}}dx}} dibergentea

Konbergentzia absolutua

Funtzioa negatiboa denean konbergentzia absolutua aztertu behar da.

a | f ( x ) | d x {\displaystyle \int _{a}^{\infty }|f(x)|dx} konbergente a f ( x ) d x {\displaystyle \Longrightarrow \int _{a}^{\infty }f(x)dx} absolutuki konbergente a f ( x ) d x {\displaystyle \Longrightarrow \int _{a}^{\infty }f(x)dx} konbergente eta | a f ( x ) d x | a | f ( x ) | d x {\displaystyle \left\vert {\int _{a}^{\infty }f(x)dx}\right\vert \leq \int _{a}^{\infty }|f(x)|dx}

Adibideak

1 s i n ( x ) x 3 d x {\displaystyle \int _{1}^{\infty }{sin(x) \over x^{3}}dx} -ren konbergentzia aztertu:


| s i n ( x ) x 3 | | s i n ( x ) | x 3 = 1 3 {\displaystyle \left\vert {sin(x) \over x^{3}}\right\vert \leq {|sin(x)| \over x^{3}}={1 \over 3}} , x > 1 {\displaystyle ,x>1}


1 1 x 3 d x {\displaystyle \int _{1}^{\infty }{1 \over x^{3}}dx} eta α = 3 > 1 {\displaystyle \alpha =3>1} denez, integrala konbergentea da. Horrek inplikatzen du 1 | s i n ( x ) x 3 | d x {\displaystyle \int _{1}^{\infty }\left\vert {\frac {sin(x)}{x^{3}}}\right\vert {}dx} konbergentea izatea eta, beraz, 1 s i n ( x ) x 3 d x {\displaystyle \int _{1}^{\infty }{sin(x) \over x^{3}}dx} absolutuki konbergentea 1 s i n ( x ) x 3 d x {\displaystyle \Longrightarrow \int _{1}^{\infty }{sin(x) \over x^{3}}dx} konbergentea.

Kanpo estekak

Autoritate kontrola
  • Wikimedia proiektuak
  • Wd Datuak: Q464118
  • Commonscat Multimedia: Improper integral / Q464118

  • Wd Datuak: Q464118
  • Commonscat Multimedia: Improper integral / Q464118