中野・西島・ゲルマンの法則

中野・西島・ゲルマンの法則 (Gell-Mann–Nishijima formula, NNG formula) は、ハドロンバリオン数BストレンジネスS、およびアイソスピンI3電荷Qとの関係を表す公式である。

この法則を基に、坂田模型大貫義郎などによるIOO対称性、SU(3)モデル、さらにクォークモデルが創られることになる。

概要

中野・西島・ゲルマンの法則は、西島和彦および中野董夫によって1953年に初めて提唱され[1]、その後のストレンジネスの概念の提案につながった。西島は、これを当初は"η荷"、後にエータ中間子と呼んでいた[2]マレー・ゲルマンは1956年に独立に同じ法則を導いた[3]。この法則の現代的な形式は、全てのフレーバー量子数(アイソスピン、アップダウン、ストレンジネス、チャーム、ボトムネス、およびトップネス)およびバリオン数と電荷とを関連付ける。

公式

中野・西島・ゲルマンの法則の元来の形式は次のとおりである:

Q = I 3 + 1 2 ( B + S ) .   {\displaystyle Q=I_{3}+{\frac {1}{2}}(B+S).\ }

この方程式は、元々は実験に基づいて経験的に立てられた。現在では、これはクォークモデルから生じる結果として理解されている。特に、粒子の電荷Qは、そのアイソスピンI3および超電荷Yと次の関係を持つ:

Q = I 3 + 1 2 Y .   {\displaystyle Q=I_{3}+{\frac {1}{2}}Y.\ }

その後、チャーム、トップ、およびボトムクォークのフレーバーが発見され、この公式は一般化された。現在では次の形を取る:

Q = I 3 + 1 2 ( B + S + C + B + T ) {\displaystyle Q=I_{3}+{\frac {1}{2}}(B+S+C+B^{\prime }+T)}

ここで、Q電荷I3アイソスピンの第三成分、Bバリオン数、およびSCB′Tストレンジネス、チャーム、ボトムネスおよびトップネス数である。

ハドロンのクォーク構成物の項によってこの公式を表現すると、以下の形となる:

Q = 2 3 [ ( n u n u ¯ ) + ( n c n c ¯ ) + ( n t n t ¯ ) ] 1 3 [ ( n d n d ¯ ) + ( n s n s ¯ ) + ( n b n b ¯ ) ] {\displaystyle Q={\frac {2}{3}}\left[\left(n_{\text{u}}-n_{\bar {\text{u}}}\right)+\left(n_{\text{c}}-n_{\bar {\text{c}}}\right)+\left(n_{\text{t}}-n_{\bar {\text{t}}}\right)\right]-{\frac {1}{3}}\left[\left(n_{\text{d}}-n_{\bar {\text{d}}}\right)+\left(n_{\text{s}}-n_{\bar {\text{s}}}\right)+\left(n_{\text{b}}-n_{\bar {\text{b}}}\right)\right]}
B = 1 3 [ ( n u n u ¯ ) + ( n c n c ¯ ) + ( n t n t ¯ ) + ( n d n d ¯ ) + ( n s n s ¯ ) + ( n b n b ¯ ) ] {\displaystyle B={\frac {1}{3}}\left[\left(n_{\text{u}}-n_{\bar {\text{u}}}\right)+\left(n_{\text{c}}-n_{\bar {\text{c}}}\right)+\left(n_{\text{t}}-n_{\bar {\text{t}}}\right)+\left(n_{\text{d}}-n_{\bar {\text{d}}}\right)+\left(n_{\text{s}}-n_{\bar {\text{s}}}\right)+\left(n_{\text{b}}-n_{\bar {\text{b}}}\right)\right]}
I 3 = 1 2 [ ( n u n u ¯ ) ( n d n d ¯ ) ] {\displaystyle I_{3}={\frac {1}{2}}[(n_{\text{u}}-n_{\bar {\text{u}}})-(n_{\text{d}}-n_{\bar {\text{d}}})]}
S = ( n s n s ¯ ) ; {\displaystyle S=-\left(n_{\text{s}}-n_{\bar {\text{s}}}\right);} C = + ( n c n c ¯ ) ; {\displaystyle C=+\left(n_{\text{c}}-n_{\bar {\text{c}}}\right);} B = ( n b n b ¯ ) ; {\displaystyle B^{\prime }=-\left(n_{\text{b}}-n_{\bar {\text{b}}}\right);} T = + ( n t n t ¯ ) {\displaystyle T=+\left(n_{\text{t}}-n_{\bar {\text{t}}}\right)}

慣習により、フレーバー量子数、ストレンジネス、チャーム、ボトムネス、およびトップネスは、粒子の電荷と同じ符号を持つようになっている。そのため、ストレンジおよびボトムクォークは負の電荷を持つので、それらのフレーバー量子数は−1である。そして、チャームおよびトップクォークは正の電荷を持つので、それらのフレーバー量子数は+1である。

脚注

  1. ^ Nakano, T; Nishijima, N (1955). “Charge Independence for V-particles”. Progress of Theoretical Physics 10 (5): 581. doi:10.1143/PTP.10.581. 
  2. ^ Nishijima, K (1955). “Charge Independence Theory of V Particles”. Progress of Theoretical Physics 13 (3): 285. doi:10.1143/PTP.13.285. 
  3. ^ Gell-Mann, M (1956). “The Interpretation of the New Particles as Displaced Charged Multiplets”. Il Nuovo Cimento 4: 848. doi:10.1007/BF02748000. 

参考文献

  • Griffiths, DJ (2008). Introduction to Elementary Particles (2nd ed.). Wiley-VCH. ISBN 978-3-527-40601-2 

関連項目

  • 表示
  • 編集