十六元数

抽象代数学における十六元数(じゅうろくげんすう、: sedenion)は、全体として実数R16次元の(双線型な乗法を持つベクトル空間という意味での)非結合的分配多元環を成す代数的な対象で、その全体はしばしば S で表される。八元数ケーリー=ディクソンの構成法を使って得られる対合的二次代数である。

「十六元数」という用語は、他の十六次元代数構造、例えば四元数の複製二つのテンソル積や実数体上の四次正方行列環などに対しても用いられ、Smith (1995) で調べられている。

算術

ケーリーの八元数と同様に十六元数の乗法は可換でも結合的でもない。そして、ケーリーの八元数環 O と明確に違うことに、十六元数の全体 S交代代数にもならない。十六元数についていえることは冪結合性(英語版)を持っているということである。これは S の元 x に対して、冪 xn矛盾なく定義可能で、それらが柔軟(英語版)であることを意味する。

任意の十六元数は、R-ベクトル空間としての S の基底を成す16個の単位十六元数 e0 = 1, e1, e2, e3, …, e15 の実係数線型結合になっている。

十六元数は乗法に関する単位元を持ち、多くの元がその逆元を持つが、多元体とはならない。これは零因子の存在による。つまり、それ自体は零ではないが掛けると零になるような十六元数の組があるのだが、簡単な例としては (e3 + e10) × (e6e15) などを挙げることができる。十六元数からケーリー=ディクソンの構成法を元にして作られるどの超複素数系も零因子を含む。

単位十六元数の乗積表は次のようなものである。

基底の乗積表
× 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
1 1 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15
e1 e1 −1 e3 e2 e5 e4 e7 e6 e9 e8 e11 e10 e13 e12 e15 e14
e2 e2 e3 −1 e1 e6 e7 e4 e5 e10 e11 e8 e9 e14 e15 e12 e13
e3 e3 e2 e1 −1 e7 e6 e5 e4 e11 e10 e9 e8 e15 e14 e13 e12
e4 e4 e5 e6 e7 −1 e1 e2 e3 e12 e13 e14 e15 e8 e9 e10 e11
e5 e5 e4 e7 e6 e1 −1 e3 e2 e13 e12 e15 e14 e9 e8 e11 e10
e6 e6 e7 e4 e5 e2 e3 −1 e1 e14 e15 e12 e13 e10 e11 e8 e9
e7 e7 e6 e5 e4 e3 e2 e1 −1 e15 e14 e13 e12 e11 e10 e9 e8
e8 e8 e9 e10 e11 e12 e13 e14 e15 −1 e1 e2 e3 e4 e5 e6 e7
e9 e9 e8 e11 e10 e13 e12 e15 e14 e1 −1 e3 e2 e5 e4 e7 e6
e10 e10 e11 e8 e9 e14 e15 e12 e13 e2 e3 −1 e1 e6 e7 e4 e5
e11 e11 e10 e9 e8 e15 e14 e13 e12 e3 e2 e1 −1 e7 e6 e5 e4
e12 e12 e13 e14 e15 e8 e9 e10 e11 e4 e5 e6 e7 −1 e1 e2 e3
e13 e13 e12 e15 e14 e9 e8 e11 e10 e5 e4 e7 e6 e1 −1 e3 e2
e14 e14 e15 e12 e13 e10 e11 e8 e9 e6 e7 e4 e5 e2 e3 −1 e1
e15 e15 e14 e13 e12 e11 e10 e9 e8 e7 e6 e5 e4 e3 e2 e1 −1

一般の十六元数の積は基底における乗法を(分配法則が成り立つように)線型に拡張することで得られる。

十六元数の全体 S は共軛元をとる主対合

x = i = 0 15 x i e i x := x 0 1 i = 1 15 x i e i {\displaystyle x=\sum _{i=0}^{15}x_{i}e_{i}\mapsto x^{*}:=x_{0}1-\sum _{i=1}^{15}x_{i}e_{i}}

によってノルム

N ( x ) := x x = i = 0 15 x i 2 ( or  x := x x ) {\displaystyle N(x):=xx^{*}=\sum _{i=0}^{15}x_{i}^{2}\quad ({\text{or }}\|x\|:={\sqrt {xx^{*}}})}

の定まる二次代数 (S, N) であるが、これはノルムが乗法的でない。

応用

Moreno (1998) はノルム 1 の十六元数からなる掛けて 0 となる対の全体が、例外型リー群 G2 のコンパクト型に同型であることを示した。

関連項目

参考文献

  • Imaeda, K.; Imaeda, M. (2000), “Sedenions: algebra and analysis”, Applied mathematics and computation 115 (2): 77–88, doi:10.1016/S0096-3003(99)00140-X, MR1786945 
  • Kinyon, M.K., Phillips, J.D., Vojtěchovský, P.: C-loops: Extensions and constructions, Journal of Algebra and its Applications 6 (2007), no. 1, 1–20. [1]
  • Kivunge, Benard M. and Smith, Jonathan D. H: "Subloops of sedenions", Comment.Math.Univ.Carolinae 45,2 (2004)295–302.
  • Moreno, Guillermo (1998), “The zero divisors of the Cayley-Dickson algebras over the real numbers”, Sociedad Matemática Mexicana. Boletí n. Tercera Serie 4 (1): 13–28, arXiv:q-alg/9710013, MR1625585 
  • Smith, Jonathan D. H. (1995), “A left loop on the 15-sphere”, Journal of Algebra 176 (1): 128–138, doi:10.1006/jabr.1995.1237, MR1345298 


可算な体系
合成代数
通常型
  • 実数 ( R {\displaystyle \mathbb {R} } )
  • 複素数 ( C {\displaystyle \mathbb {C} } )
  • 四元数 ( H {\displaystyle \mathbb {H} } )
  • 八元数 ( O {\displaystyle \mathbb {O} } )
分解型
/ R {\displaystyle \mathbb {R} }
/ C {\displaystyle \mathbb {C} }
その他の多元数
  • 二重数
  • 二重四元数(英語版)
  • 双曲四元数(英語版)
  • 十六元数 ( S {\displaystyle \mathbb {S} } )
  • 分解型双四元数(英語版)
  • 多重複素数
その他