Neurotrophin-3

Protein-coding gene in the species Homo sapiens
NTF3
Available structures
PDBOrtholog search: PDBe RCSB
List of PDB id codes

1B8K, 1BND, 1NT3, 3BUK

Identifiers
AliasesNTF3, HDNF, NGF-2, NGF2, NT-3, NT3, neurotrophin 3
External IDsOMIM: 162660 MGI: 97380 HomoloGene: 1896 GeneCards: NTF3
Gene location (Human)
Chromosome 12 (human)
Chr.Chromosome 12 (human)[1]
Chromosome 12 (human)
Genomic location for NTF3
Genomic location for NTF3
Band12p13.31Start5,432,108 bp[1]
End5,521,536 bp[1]
Gene location (Mouse)
Chromosome 6 (mouse)
Chr.Chromosome 6 (mouse)[2]
Chromosome 6 (mouse)
Genomic location for NTF3
Genomic location for NTF3
Band6 F3|6 60.45 cMStart126,078,375 bp[2]
End126,143,873 bp[2]
RNA expression pattern
Bgee
HumanMouse (ortholog)
Top expressed in
  • popliteal artery

  • right coronary artery

  • ascending aorta

  • left coronary artery

  • saphenous vein

  • right lobe of liver

  • gastric mucosa

  • canal of the cervix

  • vagina

  • cerebellar hemisphere
Top expressed in
  • ciliary body

  • ascending aorta

  • iris

  • corneal stroma

  • conjunctival fornix

  • maxillary prominence

  • substantia nigra

  • pineal gland

  • medullary collecting duct

  • semi-lunar valve
More reference expression data
BioGPS
More reference expression data
Gene ontology
Molecular function
  • neurotrophin p75 receptor binding
  • neurotrophin receptor binding
  • chemoattractant activity
  • growth factor activity
  • signaling receptor binding
  • protein binding
Cellular component
  • cytoplasmic vesicle
  • extracellular region
  • extracellular space
  • synaptic vesicle
  • axon
  • dendrite
Biological process
  • regulation of apoptotic process
  • negative regulation of neuron apoptotic process
  • regulation of neuron differentiation
  • activation of protein kinase B activity
  • neuron projection morphogenesis
  • activation of GTPase activity
  • positive regulation of receptor internalization
  • transmembrane receptor protein tyrosine kinase signaling pathway
  • positive regulation of cell migration
  • cell-cell signaling
  • positive regulation of peptidyl-serine phosphorylation
  • induction of positive chemotaxis
  • negative regulation of peptidyl-tyrosine phosphorylation
  • positive regulation of cell population proliferation
  • positive regulation of peptidyl-tyrosine phosphorylation
  • positive regulation of actin cytoskeleton reorganization
  • signal transduction
  • positive chemotaxis
  • nervous system development
  • regulation of signaling receptor activity
  • positive regulation of phospholipase C activity
  • positive regulation of phosphatidylinositol 3-kinase signaling
  • peripheral nervous system development
  • memory
  • nerve development
  • nerve growth factor signaling pathway
  • modulation of chemical synaptic transmission
  • positive regulation of neurotrophin TRK receptor signaling pathway
Sources:Amigo / QuickGO
Orthologs
SpeciesHumanMouse
Entrez

4908

18205

Ensembl

ENSG00000185652

ENSMUSG00000049107

UniProt

P20783

P20181

RefSeq (mRNA)

NM_001102654
NM_002527

NM_001164034
NM_001164035
NM_008742

RefSeq (protein)

NP_001096124
NP_002518

NP_001157506
NP_001157507
NP_032768

Location (UCSC)Chr 12: 5.43 – 5.52 MbChr 6: 126.08 – 126.14 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Neurotrophin-3 is a protein that in humans is encoded by the NTF3 gene.[5][6]

The protein encoded by this gene, NT-3, is a neurotrophic factor in the NGF (Nerve Growth Factor) family of neurotrophins. It is a protein growth factor which has activity on certain neurons of the peripheral and central nervous system; it helps to support the survival and differentiation of existing neurons, and encourages the growth and differentiation of new neurons and synapses. NT-3 was the third neurotrophic factor to be characterized, after nerve growth factor (NGF) and BDNF (Brain Derived Neurotrophic Factor).[7]

Function

Although the vast majority of neurons in the mammalian brain are formed prenatally, parts of the adult brain retain the ability to grow new neurons from neural stem cells; a process known as neurogenesis. Neurotrophins are chemicals that help to stimulate and control neurogenesis.

NT-3 is unique in the number of neurons it can potentially stimulate, given its ability to activate two of the receptor tyrosine kinase neurotrophin receptors (TrkC and TrkB).[8][9]

Mice born without the ability to make NT-3 have loss of proprioceptive and subsets of mechanoreceptive sensory neurons.[10][11]

Mechanism of action

NT-3 binds three receptors on the surface of cells which are capable of responding to this growth factor:

  • TrkC (pronounced "Track C"), is apparently the "physiologic" receptor, in that it binds with greatest affinity to NT-3.[12][13]
  • However, NT-3 is capable of binding and signaling through a TrkC-related receptors called TrkB.[14]
  • Finally, NT-3 also binds a second-receptor type besides Trk receptors, called the LNGFR (for "low affinity nerve growth factor receptor).

High affinity receptors

TrkC is a receptor tyrosine kinase (meaning it mediates its actions by causing the addition of phosphate molecules on certain tyrosines in the cell, activating cellular signaling).

As mentioned above, there are other related Trk receptors, TrkA and TrkB. Also as mentioned, there are other neurotrophic factors structurally related to NT-3:

  • NGF (for "Nerve Growth Factor")
  • BDNF (for "Brain Derived Neurotrophic Factor")
  • NT-4 (for "Neurotrophin-4")

While TrkB mediates the effects of BDNF, NT-4, and NT-3, TrkA binds and is activated by NGF, and TrkC binds and is activated only by NT-3.

Low affinity receptors

The other NT-3 receptor, the LNGFR, plays a somewhat less clear role. Some researchers have shown the LNGFR binds and serves as a "sink" for neurotrophins.

The crystal structure of NT-3 shows that NT-3 forms a central homodimer around which two glycosylated p75 LNGFR molecules bind symmetrically. The symmetrical binding takes place along the NT-3 interfaces, resulting in a 2:2 ligand-receptor cluster in the center.[15]

Cells which express both the LNGFR and the Trk receptors might therefore have a greater activity – since they have a higher "microconcentration" of the neurotrophin.

It has also been shown, however, that the LNGFR may signal a cell to die via apoptosis – so therefore cells expressing the LNGFR in the absence of Trk receptors may die rather than live in the presence of a neurotrophin.

See also

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000185652 – Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000049107 – Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ Maisonpierre PC, Le Beau MM, Espinosa R III, Ip NY, Belluscio L, de la Monte SM, Squinto S, Furth ME, Yancopoulos GD (Oct 1991). "Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations". Genomics. 10 (3): 558–68. doi:10.1016/0888-7543(91)90436-I. PMID 1889806.
  6. ^ "Entrez Gene: NTF3 neurotrophin 3".
  7. ^ Maisonpierre P, Belluscio L, Squinto S, Ip N, Furth M, Lindsay R, Yancopoulos G (1990). "Neurotrophin-3: a neurotrophic factor related to NGF and BDNF". Science. 247 (4949 Pt 1): 1446–51. Bibcode:1990Sci...247.1446M. doi:10.1126/science.2321006. PMID 2321006. S2CID 37763746.
  8. ^ Glass DJ, Nye SH, Hantzopoulos P, Macchi MJ, Squinto SP, Goldfarb M, Yancopoulos GD (July 1991). "TrkB mediates BDNF/NT-3-dependent survival and proliferation in fibroblasts lacking the low affinity NGF receptor". Cell. 66 (2): 405–413. doi:10.1016/0092-8674(91)90629-d. PMID 1649703. S2CID 43626580.
  9. ^ Ip NY, Stitt TN, Tapley P, Klein R, Glass DJ, Fandl J, Greene LA, Barbacid M, Yancopoulos GD (Feb 1993). "Similarities and differences in the way neurotrophins interact with the Trk receptors in neuronal and nonneuronal cells". Neuron. 10 (2): 137–149. doi:10.1016/0896-6273(93)90306-c. PMID 7679912. S2CID 46072027.
  10. ^ Tessarollo L, Vogel K, Palko M, Reid S, Parada L (1994). "Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons". Proc Natl Acad Sci USA. 91 (25): 11844–8. Bibcode:1994PNAS...9111844T. doi:10.1073/pnas.91.25.11844. PMC 45332. PMID 7991545.
  11. ^ Klein R, Silos-Santiago I, Smeyne R, Lira S, Brambilla R, Bryant S, Zhang L, Snider W, Barbacid M (1994). "Disruption of the neurotrophin-3 receptor gene trkC eliminates la muscle afferents and results in abnormal movements". Nature. 368 (6468): 249–51. Bibcode:1994Natur.368..249K. doi:10.1038/368249a0. PMID 8145824. S2CID 4328770.
  12. ^ Lamballe F, Klein R, Barbacid M (1991). "trkC, a new member of the trk family of tyrosine protein kinases, is a receptor for neurotrophin-3". Cell. 66 (5): 967–79. doi:10.1016/0092-8674(91)90442-2. PMID 1653651. S2CID 23448391.
  13. ^ Tessarollo L, Tsoulfas P, Martin-Zanca D, Gilbert D, Jenkins N, Copeland N, Parada L (1993). "trkC, a receptor for neurotrophin-3, is widely expressed in the developing nervous system and in non-neuronal tissues". Development. 118 (2): 463–75. doi:10.1242/dev.118.2.463. PMID 8223273.
  14. ^ Glass DJ, Nye SH, Hantzopoulos P, Macchi MJ, Squinto SP, Goldfarb M, Yancopoulos GD (July 1991). "TrkB mediates BDNF/NT-3-dependent survival and proliferation in fibroblasts lacking the low affinity NGF receptor". Cell. 66 (2): 405–413. doi:10.1016/0092-8674(91)90629-d. PMID 1649703. S2CID 43626580.
  15. ^ Gong Y, Cao P, Yu HJ, Jiang T (August 2008). "Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex". Nature. 454 (7205): 789–93. Bibcode:2008Natur.454..789G. doi:10.1038/nature07089. PMID 18596692. S2CID 4333271.

Further reading

  • Kalcheim C, Carmeli C, Rosenthal A (1992). "Neurotrophin 3 is a mitogen for cultured neural crest cells". Proc. Natl. Acad. Sci. U.S.A. 89 (5): 1661–5. Bibcode:1992PNAS...89.1661K. doi:10.1073/pnas.89.5.1661. PMC 48512. PMID 1542658.
  • Ozçelik T, Rosenthal A, Francke U (1991). "Chromosomal mapping of brain-derived neurotrophic factor and neurotrophin-3 genes in man and mouse". Genomics. 10 (3): 569–75. doi:10.1016/0888-7543(91)90437-J. PMID 1889807.
  • Hallböök F, Ibáñez CF, Persson H (1991). "Evolutionary studies of the nerve growth factor family reveal a novel member abundantly expressed in Xenopus ovary". Neuron. 6 (5): 845–58. doi:10.1016/0896-6273(91)90180-8. PMID 2025430. S2CID 17772282.
  • Jones KR, Reichardt LF (1990). "Molecular cloning of a human gene that is a member of the nerve growth factor family". Proc. Natl. Acad. Sci. U.S.A. 87 (20): 8060–4. Bibcode:1990PNAS...87.8060J. doi:10.1073/pnas.87.20.8060. PMC 54892. PMID 2236018.
  • Rosenthal A, Goeddel DV, Nguyen T, et al. (1990). "Primary structure and biological activity of a novel human neurotrophic factor". Neuron. 4 (5): 767–73. doi:10.1016/0896-6273(90)90203-R. PMID 2344409. S2CID 30148948.
  • Kaisho Y, Yoshimura K, Nakahama K (1990). "Cloning and expression of a cDNA encoding a novel human neurotrophic factor". FEBS Lett. 266 (1–2): 187–91. doi:10.1016/0014-5793(90)81536-W. PMID 2365067. S2CID 7645464.
  • Ernfors P, Lee KF, Kucera J, Jaenisch R (1994). "Lack of neurotrophin-3 leads to deficiencies in the peripheral nervous system and loss of limb proprioceptive afferents". Cell. 77 (4): 503–12. doi:10.1016/0092-8674(94)90213-5. PMID 7514502. S2CID 9072110.
  • Robinson RC, Radziejewski C, Stuart DI, Jones EY (1995). "Structure of the brain-derived neurotrophic factor/neurotrophin 3 heterodimer". Biochemistry. 34 (13): 4139–46. doi:10.1021/bi00013a001. PMID 7703225.
  • Hattori M, Nanko S (1995). "Association of neurotrophin-3 gene variant with severe forms of schizophrenia". Biochem. Biophys. Res. Commun. 209 (2): 513–8. doi:10.1006/bbrc.1995.1531. PMID 7733919.
  • Tessarollo L, Vogel KS, Palko ME, et al. (1995). "Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons". Proc. Natl. Acad. Sci. U.S.A. 91 (25): 11844–8. Bibcode:1994PNAS...9111844T. doi:10.1073/pnas.91.25.11844. PMC 45332. PMID 7991545.
  • Rydén M, Ibáñez CF (1996). "Binding of neurotrophin-3 to p75LNGFR, TrkA, and TrkB mediated by a single functional epitope distinct from that recognized by trkC". J. Biol. Chem. 271 (10): 5623–7. doi:10.1074/jbc.271.10.5623. PMID 8621424.
  • Hui JO, Le J, Katta V, et al. (1996). "Human neurotrophin-3: a one-step peptide mapping method and complete disulfide characterization of the recombinant protein". J. Protein Chem. 15 (4): 351–8. doi:10.1007/BF01886861. PMID 8819011. S2CID 34957071.
  • Donovan MJ, Hahn R, Tessarollo L, Hempstead BL (1996). "Identification of an essential nonneuronal function of neurotrophin 3 in mammalian cardiac development". Nat. Genet. 14 (2): 210–3. doi:10.1038/ng1096-210. PMID 8841198. S2CID 9259115.
  • Arinami T, Takekoshi K, Itokawa M, et al. (1996). "Failure to find associations of the CA repeat polymorphism in the first intron and the Gly-63/Glu-63 polymorphism of the neurotrophin-3 gene with schizophrenia". Psychiatr. Genet. 6 (1): 13–5. doi:10.1097/00041444-199621000-00003. PMID 8925252. S2CID 42610869.
  • Urfer R, Tsoulfas P, O'Connell L, et al. (1998). "High resolution mapping of the binding site of TrkA for nerve growth factor and TrkC for neurotrophin-3 on the second immunoglobulin-like domain of the Trk receptors". J. Biol. Chem. 273 (10): 5829–40. doi:10.1074/jbc.273.10.5829. PMID 9488719.
  • Suenaga M, Ohmae H, Tsuji S, et al. (1998). "Renaturation of recombinant human neurotrophin-3 from inclusion bodies using a suppressor agent of aggregation". Biotechnol. Appl. Biochem. 28 (2): 119–24. doi:10.1111/j.1470-8744.1998.tb00521.x. PMID 9756741. S2CID 45466609.
  • Hochhaus F, Koehne P, Schäper C, et al. (2003). "Elevated nerve growth factor and neurotrophin-3 levels in cerebrospinal fluid of children with hydrocephalus". BMC Pediatrics. 1: 2. doi:10.1186/1471-2431-1-2. PMC 57003. PMID 11580868.
  • Kobayashi H, Gleich GJ, Butterfield JH, Kita H (2002). "Human eosinophils produce neurotrophins and secrete nerve growth factor on immunologic stimuli". Blood. 99 (6): 2214–20. doi:10.1182/blood.V99.6.2214. PMID 11877300.
  • Hattori M, Kunugi H, Akahane A, et al. (2002). "Novel polymorphisms in the promoter region of the neurotrophin-3 gene and their associations with schizophrenia". Am. J. Med. Genet. 114 (3): 304–9. doi:10.1002/ajmg.10248. PMID 11920853.
  • v
  • t
  • e
  • 1b8k: Neurotrophin-3 from Human
    1b8k: Neurotrophin-3 from Human
  • 1bnd: STRUCTURE OF THE BRAIN-DERIVED NEUROTROPHIC FACTOR(SLASH)NEUROTROPHIN 3 HETERODIMER
    1bnd: STRUCTURE OF THE BRAIN-DERIVED NEUROTROPHIC FACTOR(SLASH)NEUROTROPHIN 3 HETERODIMER
  • 1nt3: HUMAN NEUROTROPHIN-3
    1nt3: HUMAN NEUROTROPHIN-3
  • v
  • t
  • e
Endocrine
glands
Hypothalamic–
pituitary
Hypothalamus
Posterior pituitary
Anterior pituitary
Adrenal axis
Thyroid
Parathyroid
Gonadal axis
Testis
Ovary
Placenta
Pancreas
Pineal gland
Other
Thymus
Digestive system
Stomach
Duodenum
Ileum
Liver/other
Adipose tissue
Skeleton
Kidney
Heart
  • v
  • t
  • e
Angiopoietin
  • Kinase inhibitors: Altiratinib
  • CE-245677
  • Rebastinib
CNTF
EGF (ErbB)
EGF
(ErbB1/HER1)
ErbB2/HER2
  • Agonists: Unknown/none
ErbB3/HER3
ErbB4/HER4
FGF
FGFR1
FGFR2
  • Antibodies: Aprutumab
  • Aprutumab ixadotin
FGFR3
FGFR4
Unsorted
HGF (c-Met)
IGF
IGF-1
  • Kinase inhibitors: BMS-754807
  • Linsitinib
  • NVP-ADW742
  • NVP-AEW541
  • OSl-906
IGF-2
  • Antibodies: Dusigitumab
  • Xentuzumab (against IGF-1 and IGF-2)
Others
  • Cleavage products/derivatives with unknown target: Glypromate (GPE, (1-3)IGF-1)
  • Trofinetide
LNGF (p75NTR)
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: LEVI-04 (p75NTR-Fc)
PDGF
RET (GFL)
GFRα1
GFRα2
GFRα3
GFRα4
Unsorted
  • Kinase inhibitors: Agerafenib
SCF (c-Kit)
TGFβ
  • See here instead.
Trk
TrkA
  • Negative allosteric modulators: VM-902A
  • Aptamers: Against NGF: RBM-004
  • Decoy receptors: ReN-1820 (TrkAd5)
TrkB
TrkC
VEGF
Others