プロカ方程式

場の量子論
(ファインマン・ダイアグラム)
歴史
背景
量子力学
場の理論
ゲージ理論
ヤン=ミルズ理論
自発的対称性の破れ
ポアンカレ群
対称性
荷電共役対称性
交叉対称性(英語版)
パリティ
時間反転対称性(T対称性
方法
量子異常(アノマリー)
有効場の理論
真空期待値
ファデエフ=ポポフゴースト
ファインマン・ダイアグラム
格子ゲージ理論
LSZ簡約公式
分配関数
伝播関数
量子化
繰り込み
真空状態
ウィックの定理
ワイトマンの公理系
方程式
ディラック方程式
クライン–ゴルドン方程式
プロカ方程式
ホイーラー・ドウィット方程式
標準模型
量子電磁力学
量子色力学
ワインバーグ=サラム理論
ヒッグス機構
未完成理論
量子重力理論
弦理論
超対称性
テクニカラー(英語版)
万物の理論
科学者
アドラー(英語版)ベーテボゴリューボフカラン(英語版)キャンドリン(英語版)コールマンドウィットディラックダイソンフェルミファインマンフィールツ(英語版)フレーリッヒ(英語版)ゲルマンゴールドストーングロストホーフトジャッキーヴ(英語版)クラインランダウ李政道レーマンマヨラナ南部パリージポリャコフアブドゥッサラームシュウィンガースキルムシュテュッケルベルクシマンチク(英語版)朝永フェルトマンワインバーグワイスコフウィルソンウィルチェックウィッテン楊振寧湯川ジマーマン(英語版)

場の量子論において、プロカ方程式(プロカほうていしき、Proca equation)は、スピン1を持ち、0でない質量を持つ相対論的なボース粒子、及びそれと対応するベクトル場を記述する運動方程式である。質量が0のプロカ方程式はマクスウェル方程式である。名称はルーマニア出身の物理学者アレクサンドル・プロカに由来する[1]

プロカ方程式は以下のように表記される。

( μ μ + m 2 ) A ν = 0 {\displaystyle \left(\partial _{\mu }\partial ^{\mu }+m^{2}\right)A^{\nu }=0}

ここで、Aνは実ベクトル場、mはベクトル場の質量であり、ミンコフスキー空間計量テンソルはdiag(+1, -1, -1, -1)を採用している。この形式を見れば分かるように、プロカ方程式はクライン=ゴルドン方程式で記述されるスカラー場を、時空について4成分のベクトル場と入れ換えた式である。

ラグランジアン密度

この項で解説するのは、プロカ方程式を導出する最も単純なラグランジアン密度であるプロカ形式である。質量を持つベクトル場を記述する形式として、他にシュテュッケルベルク形式がある。プロカ形式は、シュテュッケルベルク形式における補助スカラー場を0とした場合と等しい形式である。

プロカ形式のラグランジアン密度は以下のように表記される。

L = 1 4 F μ ν F μ ν + 1 2 m 2 A ν A ν {\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+{\frac {1}{2}}m^{2}A_{\nu }A^{\nu }}

ここで、Aνは実ベクトル場で、 F μ ν μ A ν ν A μ {\displaystyle F_{\mu \nu }\equiv \partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }} (Aν電磁場の場合は電磁場テンソル)である。このラグランジアン密度はベクトル場の質量項が存在するためにゲージ不変性を破っている。

上記のラグランジアン密度をオイラー=ラグランジュ方程式

μ ( L ( μ A ν ) ) L A ν = 0 {\displaystyle \partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }A_{\nu })}}\right)-{\frac {\partial {\mathcal {L}}}{\partial A_{\nu }}}=0}

に代入して得られる運動方程式がプロカ方程式である。

μ ( μ A ν ν A μ ) + m 2 A ν = 0 {\displaystyle \partial _{\mu }(\partial ^{\mu }A^{\nu }-\partial ^{\nu }A^{\mu })+m^{2}A^{\nu }=0}

ここで、両辺に ν {\displaystyle \partial _{\nu }} をかけて、 μ ν F μ ν = 0 {\displaystyle \partial _{\mu }\partial _{\nu }F^{\mu \nu }=0} を用いると、m≠0 のとき、ローレンツゲージ条件

μ A μ = 0 {\displaystyle \partial _{\mu }A^{\mu }=0}

が自動的に導ける。これより、結局、プロカ方程式は

( μ μ + m 2 ) A ν = 0 {\displaystyle \left(\partial _{\mu }\partial ^{\mu }+m^{2}\right)A^{\nu }=0}

となる。

なお、四元ベクトルポテンシャルは本来4成分であるが、ローレンツゲージ条件が課されていることにより、独立な成分は3成分になる。これはプロカ方程式によって記述される粒子がスピン1の粒子であることに対応している。

出典

  1. ^ Proca, A. (1936). “Sur la théorie ondulatoire des électrons positifs et négatifs”. Journal de Physique et le Radium 7: 347–353. doi:10.1051/jphysrad:0193600708034700.