緯度

測地学
基本
  • 測地学
  • 地理力学(英語版)
  • ジオマティクス(英語版)
  • 地図学
  • 測地学の歴史(英語版)
概念
技術
基準(歴史(英語版)
NGVD29(英語版) 海面測地系1929年
OSGB36(英語版) イギリス陸上測量1936年
SK-42(英語版) Systema Koordinat 1942 goda
ED50(英語版) 欧州座標系1950年
SAD69(英語版) 南米測地系1969年
GRS80GRS80地球楕円体1980年
NAD83 北米測地系1983年
WGS84 世界測地系1984年
NAVD88(英語版) 北米垂直測地系1988年
ETRS89(英語版) 欧州地球基準座標系システム1989年
GCJ-02 中国の暗号化された座標系2002年
Geo URI(英語版) 地点へのインターネットリンク 2010年

緯度(いど、英語: Latitude, ドイツ語: Breite)とは、経緯度(=経度・緯度。すなわち天体表面上の位置を示す座標)の一つである。以下特に断らない限り、地球の緯度について述べる。余緯度とは緯度の余角

概要

緯度は、その地点における天頂の方向と赤道面とのなす角度で表される。赤道が緯度0度となり北を北緯、南を南緯といい北極南極が90度となる。また北緯に+(プラス)、南緯に-(マイナス)を付けて表す場合もある。1度よりも細かい緯度は、1度=60分=3600秒と分割して表現する(0.1度は6分となる)。

同じ緯度の点を結んだ線を緯線という。「緯」とは織物の横糸の意味で、経緯線を織物に見立てたものである。メルカトル図法の地図では、緯線は赤道に平行な直線となる。経線を子午線というのに対し、子午線の対義語として(東)と(西)とを結ぶ線を卯酉線(ぼうゆうせん)というが、緯線とは異なる概念を指す。

太陽は地上から見て赤道直上を中心に南北に往復しているがその範囲は緯度23度27分までであり、この緯線を回帰線北回帰線南回帰線)と言う。また、緯度が66度33分よりも高い地域を極圏北極圏南極圏)という。

1海里は緯度1分の地球表面上の距離を元に作られており、ほぼそれに等しい。

緯度の種類

地理緯度と、等長緯度を除く様々な緯度との差

地球は完全なではなく回転楕円体扁球)で近似する(しかし実際にはそれからもわずかにずれている)。そのため、完全な球であれば同義である[1]以下の定義にも差異が生じる。

地理緯度 (geographic latitude)

地球を回転楕円体で近似したときに、その地点における楕円体面の法線と赤道面とがなす角度を、地理緯度と呼ぶ。単に「緯度」といえば通常この意味で用いる。以下では、地理緯度を φ {\displaystyle \varphi \,\!} 地球楕円体長半径、第三扁平率および第一離心率をそれぞれ a {\displaystyle a\,\!} n {\displaystyle n\,\!} および e {\displaystyle e\,\!} とする。

地心緯度 (geocentric latitude)

地心緯度ψの定義

その地点と地球の重心とを結ぶ直線、および赤道面とでなす角の角度を、地心緯度と呼ぶ。地心緯度 ψ {\displaystyle \psi \,\!} は、地理緯度 φ {\displaystyle \varphi \,\!} と以下のような関係にある:

ψ ( φ ) = tan 1 ( ( 1 e 2 ) tan φ ) = tan 1 [ ( 1 n 1 + n ) 2 tan φ ] {\displaystyle {\begin{aligned}\psi (\varphi )&=\tan ^{-1}\left((1-e^{2})\tan \varphi \right)\\&=\tan ^{-1}\left[\left({\frac {1-n}{1+n}}\right)^{2}\tan \varphi \right]\end{aligned}}}

同地点における地理緯度と地心緯度との差は、当該地理緯度を用いて以下のように表される。

φ ψ = tan 1 ( e 2 sin φ cos φ 1 e 2 sin 2 φ ) = tan 1 ( 2 n sin 2 φ 1 + 2 n cos 2 φ + n 2 ) = k = 1 ( 2 n 1 + n 2 ) k sin 2 k φ k {\displaystyle {\begin{aligned}\varphi -\psi &=\tan ^{-1}\left({\frac {e^{2}\sin \varphi \cos \varphi }{1-e^{2}\sin ^{2}\varphi }}\right)\\&=\tan ^{-1}\left({\frac {2n\sin 2\varphi }{1+2n\cos 2\varphi +n^{2}}}\right)\\&=-\sum _{k=1}^{\infty }\left({\frac {-2n}{1+n^{2}}}\right)^{k}{\frac {\sin 2k\varphi }{k}}\end{aligned}}}

上式から分かるように、地理緯度とは最大で11分33秒程度(緯度45度付近)の差がある。

更成緯度 (reduced latitude)

更成緯度βの定義

図のように、中心が地球楕円体の中心と一致し、半径が地球楕円体の長半径に等しい球を考えたとき、地球楕円体上の位置を当該球に地球の自転軸と平行に射影した位置が示す緯度として定義される。更成緯度 β {\displaystyle \beta \,\!} は、地理緯度 φ {\displaystyle \varphi \,\!} と以下のような関係にある:

β ( φ ) = tan 1 ( 1 e 2 tan φ ) = tan 1 ( 1 n 1 + n tan φ ) {\displaystyle {\begin{aligned}\beta (\varphi )&=\tan ^{-1}\left({\sqrt {1-e^{2}}}\tan \varphi \right)\\&=\tan ^{-1}\left({\frac {1-n}{1+n}}\tan \varphi \right)\end{aligned}}}

なお、更成緯度は“パラメトリック緯度”(parametric latitude) とも称される。これは、右図において点 P ( p , z ) {\displaystyle P(p,z)} の座標値 p {\displaystyle p\,\!} および z {\displaystyle z\,\!} を、それぞれ β {\displaystyle \beta \,\!} 媒介変数として

p = a cos β , z = b sin β {\displaystyle p=a\cos \beta ,\quad z=b\sin \beta }

と表すことができることから、アーサー・ケイリーが提唱[2]したことによる。

正積緯度 (authalic latitude)

球への等積写像を与える緯度として定義される。正積緯度 ξ {\displaystyle \xi \,\!} は、地理緯度 φ {\displaystyle \varphi \,\!} と以下のような関係にある:

ξ ( φ ) = sin 1 ( s ( φ ) s ( π / 2 ) ) {\displaystyle \xi (\varphi )=\sin ^{-1}\left({\frac {s(\varphi )}{s(\pi /2)}}\right)}

ただし、 s ( φ ) {\displaystyle s(\varphi )\,\!} は赤道から地理緯度 φ {\displaystyle \varphi \,\!} までの緯度帯面積を表し、地理緯度 θ {\displaystyle \theta \,\!} における地球楕円体の子午線曲率半径および卯酉線曲率半径をそれぞれ M θ {\displaystyle M_{\theta }\,\!} および N θ {\displaystyle N_{\theta }\,\!} とするとき、

s ( φ ) = 2 π 0 φ M θ N θ cos θ d θ = π a 2 ( 1 e e ) ( e sin φ 1 e 2 sin 2 φ + tanh 1 ( e sin φ ) ) {\displaystyle {\begin{aligned}s(\varphi )&=2\pi \int _{0}^{\varphi }M_{\theta }N_{\theta }\cos \theta {\rm {d}}\theta \\&=\pi a^{2}\left({\frac {1}{e}}-e\right)\left({\frac {e\sin \varphi }{1-e^{2}\sin ^{2}\varphi }}+\tanh ^{-1}(e\sin \varphi )\right)\end{aligned}}}

で与えられる[3]

求長緯度 (rectifying latitude)

赤道から地理緯度までの子午線弧長で換算される緯度で、求長緯度 μ {\displaystyle \mu \,\!} は、地理緯度 φ {\displaystyle \varphi \,\!} と以下のような関係にある:

μ ( φ ) = π 2 m ( φ ) m ( π / 2 ) {\displaystyle \mu (\varphi )={\frac {\pi }{2}}{\frac {m(\varphi )}{m(\pi /2)}}}

ただし、 m ( φ ) {\displaystyle m(\varphi )\,\!} は赤道から地理緯度 φ {\displaystyle \varphi \,\!} までの子午線弧長を表し、

m ( φ ) = 0 φ M θ d θ {\displaystyle m(\varphi )=\int _{0}^{\varphi }M_{\theta }{\rm {d}}\theta }

で与えられる。

μ {\displaystyle \mu \,\!} φ {\displaystyle \varphi \,\!} についてよりあらわに書き下せば、次のように表すことができる[4]

μ ( φ ) = φ + j = 0 { k = 1 j ( n 2 k + n ) } 2 l = 1 2 j sin 2 l φ l m = 1 l ( n 2 j + 2 ( 1 ) m m / 2 n ) ( 1 ) m j = 0 { k = 1 j ( n 2 k + n ) } 2 {\displaystyle \mu (\varphi )=\varphi \,+\,{\frac {\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}\sum _{l=1}^{2j}{\frac {\sin 2l\varphi }{l}}\prod _{m=1}^{l}\left({\frac {-n}{2j+2\cdot (-1)^{m}\lfloor m/2\rfloor }}-n\right)^{(-1)^{m}}}{\displaystyle \sum _{j=0}^{\infty }\left\{\prod _{k=1}^{j}\left({\frac {n}{2k}}+n\right)\right\}^{2}}}}

等長緯度 (isometric latitude)

メルカトル図法による世界地図。横の線が緯線を表し、地理緯度 φ {\displaystyle \varphi \,\!} に相当する緯線は等長緯度 q ( φ ) {\displaystyle q(\varphi )} に換算して配置されている。

地球楕円体上のいかなる位置においても経線方向と緯線方向の微小距離が等しくなるように換算された緯度で、等長緯度 q {\displaystyle q\,\!} は、地理緯度 φ {\displaystyle \varphi \,\!} と以下のような関係にある:

q ( φ ) = 0 φ M θ d θ N θ cos θ = gd 1 φ e tanh 1 ( e sin φ ) = ( 1 e 2 ) Π ( e 2 ; φ , 1 ) {\displaystyle q(\varphi )=\int _{0}^{\varphi }{\frac {M_{\theta }{\rm {d}}\theta }{N_{\theta }\cos \theta }}=\operatorname {gd} ^{-1}\varphi -e\tanh ^{-1}(e\sin \varphi )=(1-e^{2})\Pi (e^{2};\varphi ,1)}

ただし、 gd 1 x {\displaystyle \operatorname {gd} ^{-1}x} は逆グーデルマン関数を表し、 Π ( a ; φ , k ) {\displaystyle \Pi (a;\varphi ,k)} は第三種楕円積分ルジャンドルの標準形)を表す。

等長緯度はメルカトル図法において重要な役割を果たす量であり、地球楕円体上の φ = {\displaystyle \varphi =} 一定 の平行圏(緯線)は、投影面において q = {\displaystyle q=} 一定 の直線として写像されることになる。

正角緯度 (conformal latitude)

球への等角写像を与える緯度として定義される。正角緯度 χ {\displaystyle \chi \,\!} は、地理緯度 φ {\displaystyle \varphi \,\!} と以下のような関係にある:

χ ( φ ) = gd ( q ( φ ) ) = gd ( gd 1 ( φ ) e tanh 1 ( e sin φ ) ) {\displaystyle \chi (\varphi )=\operatorname {gd} \left(q(\varphi )\right)=\operatorname {gd} \left(\operatorname {gd} ^{-1}(\varphi )-e\tanh ^{-1}(e\sin \varphi )\right)}

正角緯度 χ {\displaystyle \chi } は、地心緯度 ψ {\displaystyle \psi } と値が極めて類似していることが知られている[5]

天文緯度 (astronomical latitude)

詳細は「天文経緯度」を参照

その地点の重力に基づく「真上」(鉛直方向、天頂方向)と赤道面がなす角度を、天文緯度と呼ぶ。天の北極天の南極高度と同じであり、主に天文観測で求めたため「天文」の名がつく。実際には大気差によるずれが生じるため、大気差の小さい「真上」付近に来る星を子午環で観測し、赤緯を測定して求めた。

重力は等重力ポテンシャル面(ジオイド面)の法線方向であるから、ジオイド面が地球楕円体面と完全に一致すれば天文緯度と地理緯度は一致する。しかし実際は地下の質量分布が不均等であるため、ジオイド面が複雑に歪んでいる。その影響で、天文緯度と地理緯度の間には数秒程度の差がある(鉛直線偏差)。

これに加え、赤道面の変化、すなわち自転軸の変化が存在する(極運動)。これは428日周期を持っているので、天文緯度は常に周期的に変化している。ただし数年幅の短期的な変化は0.5秒以下である。それ以上の長期的な変化も存在し、地球全体の質量分布の変化が原因と考えられるが、現時点では長期的な予測は困難である。

それでも、GPSなど長い距離を正確に測る手段がない20世紀前半までは、これがもっとも正確な測定方法であった。

測地学的緯度 (geodetic latitude)

「測地学的緯度」を地理緯度と同じ意味で、もしくは地球楕円体面上の問題であることを強調するために用いることがあるが、ここでは地理緯度と分けて用語を設定し説明する。

大雑把に言えば「地図から読み取った緯度」と定義できる。その時点での測量技術に基づきもっとも正確に求められる「緯度」であるが、あくまでその時点の技術水準に依存する。20世紀中においては、首都の天文台での観測結果を元に測地系と地球楕円体を先に決めた上で、その地点までの地上測量を基に決定した緯度である。その地点の重力の歪みの影響は直接受けないものの、測地系決定のために行った測量のずれ(日本で言えば東京での重力の歪み)や採用した地球楕円体の誤差の影響を受ける。GPSVLBIもない20世紀初頭には、地球の正確な形状、地球重心の位置、重力の歪みなどを正確に測定する方法がなく、測地学的緯度をもって地理緯度とみなすことが多かった[6]

緯度1秒の長さ

地球の子午線周長は約40 008kmである。すなわち、平均的には

  • 緯度1度の長さ 約111 km
  • 緯度1分の長さ 約1.85 km
  • 緯度1秒の長さ 約30.9 m

と求められるが、実際には地球は回転楕円体に近い形をしているため、緯度によって僅かながら緯度1秒の長さに違いがある。ちなみに、海里は元来、緯度1分の長さであるが、より正確には緯度45度における緯度1分の子午線弧長が海里のもともとの定義になっていた(30.869 938m/秒 = 1852.196 m/分(ただし、この数値は、現今のGRS 80によるものであって、海里の定義を定めたときには異なる値であった。))。

緯度1秒の長さ l {\displaystyle l\,\!} は着目している地点の地理緯度 φ {\displaystyle \varphi \,\!} に依存し、地球楕円体の赤道半径(長半径)を a {\displaystyle a\,\!} 離心率 e {\displaystyle e\,\!} とすると、近似的に

l π M φ 648000 = π 648000 a ( 1 e 2 ) ( 1 e 2 sin 2 φ ) 3 / 2 {\displaystyle l\simeq {\frac {\pi M_{\varphi }}{648000}}={\frac {\pi }{648000}}\cdot {\frac {a(1-e^{2})}{(1-e^{2}\sin ^{2}\varphi )^{3/2}}}}

と表される[3]。 地球楕円体としてGRS 80を採用した場合、 a {\displaystyle a} = (正確に)6 378 137m、 e 2 {\displaystyle \,e^{2}} = 0.006 694 380 022 900 788(近似値)である。GRS 80地球楕円体表面上の代表的な地点および日本周辺の緯度における値を、上記の式によって計算した結果は次のとおりである。

緯度 緯度1秒の長さ
0度(赤道) 30.715 m
15度 30.736 m
24度 30.766 m
25度 30.770 m
26度 30.774 m
27度 30.779 m
28度 30.783 m
29度 30.788 m
30度 30.792 m
31度 30.797 m
32度 30.802 m
33度 30.807 m
34度 30.812 m
35度 30.817 m
35度39分29秒1572(日本経緯度原点 30.820 187 609 m
36度 30.822 m
37度 30.827 m
38度 30.832 m
39度 30.838 m
40度 30.843 m
41度 30.848 m
42度 30.854 m
43度 30.859 m
44度 30.865 m
45度 30.870 m
46度 30.875 m
47度 30.881 m
48度 30.886 m
49度 30.892 m
50度 30.897 m
60度 30.948 m
75度 31.005 m
90度(極点) 31.026 m

各緯度の主要な都市

注:緯度の値は概略値

各緯度の俗称

北半球と異なり、南半球では陸地が少なく、亜寒帯がない代わりにその中でも南極大陸に近い海域は荒れる傾向にある。そのため、緯度ごとに俗称が付けられている。

吠える40度

南緯40度から50度にかけての海域の俗称。英語からロアリング・フォーティーズ(Roaring Forties)とも呼ばれる。このように呼ばれる理由は、吠える40度の海域では西寄りの卓越風が吹いているからである。この風を弱める陸地が少ないため、この風は南半球で特に強い。その中でもインド洋南部では特に強い。航行速度を稼ぐ際に利用される海域である。

詳しくは「吠える40度」を参照のこと。

狂う50度

南緯50度から60度にかけての海域の俗称。英語からフューリアス・フィフティーズ(Furious Fifties)ともいう。南極海を航行するはこの緯度で、吠える40度よりも猛烈なに見舞われ、波浪によって船内は大きく揺れる。極めて荒れた海域であるため、吠える40度よりも危険度が増す。

詳しくは「狂う50度」を参照のこと。

絶叫する60度

南緯60度から70度にかけての海域の俗称である。英語からシュリーキング・シックスティーズ(Shrieking Sixties)、スクリーミング・シックスティーズ(Screaming Sixties)ともいう。南極海を航行する船は、吠える40度狂う50度を超えたこの海域でさらに強い嵐に見舞われる。破壊的な暴風と壁のような波が常時発生する世界最悪の荒れた海域であり、航行には熟練の航海技術が要求される。

詳しくは「絶叫する60度」を参照のこと。

脚注

[脚注の使い方]
  1. ^ 等長緯度に関しては地球を真球とみなしたとしても、そもそも地理緯度と異なる概念である。
  2. ^ Cayley, A. (1870): On the geodesic lines on an oblate spheroid, Philosophical Magazine, 40 (4th Series), 329-340.
  3. ^ a b 例えば、理科年表(2014年版、2013年11月30日発行)地学部 「地球楕円体に関する計算式」,p.地3(p.581)
  4. ^ Kawase, K. (2011): A General Formula for Calculating Meridian Arc Length and its Application to Coordinate Conversion in the Gauss-Krüger Projection, Bulletin of the Geospatial Information Authority of Japan, 59, 1–13
  5. ^ 河瀬和重 (2021): 地心緯度を介した正角緯度と地理(測地)緯度との関係について, 国土地理院時報, 134, 49–56
  6. ^ 日露戦争後のポーツマス条約により「北緯50度以南の樺太を日本に割譲する」ことが決まったが、「北緯50度とは天文緯度である」と定められ、現地測量により国境線を画定した。しかし日本測地系による東京からの測量を伸ばしていくと、確定した国境線が日本測地系での北緯50度線より200mほど南となり、一部で問題視された。(旧樺太の日露国境画定)2002年に日本が採用した世界測地系による北緯50度は、天文測量で確定したものに近い。しかし当時としては、どの測地系が適切なのか知る方法がない一方、各国の測地系間のずれも認識され始めた中、さらに天文緯度と測地学的緯度の混同もあった。

関連項目

プロジェクト 地理座標
典拠管理データベース: 国立図書館 ウィキデータを編集
  • スペイン
  • フランス
  • BnF data
  • ドイツ
  • イスラエル
  • アメリカ