バイオ燃料

ネブラスカ州フェアモント(英語版)のバイオ燃料製造プラント
バイオ燃料(バイオエタノール)の火

バイオ燃料(バイオねんりょう、: Biofuel)とは生物体(バイオマス)を利用した燃料全般を言う[1]。 直接燃焼させる他、用途に応じてアルコール燃料合成ガス、コークス状やペレット状の固形燃料のように加工され、バイオマス発電航空機自動車船舶など幅広い機械の燃料として使われる。 食用バイオマス(穀物など)を用いて製造するものを第一世代バイオ燃料、非食用のバイオマス(木質燃料廃棄物)を用いて製造するものを第二世代バイオ燃料という。 再生可能エネルギーの一つとして扱われる。

概要

バイオ燃料は石油のような枯渇性資源を代替しうる「非枯渇性資源」として注目されている他、地球温暖化問題によるCO2削減要請の高まりもあって、カーボンニュートラルである[注釈 1]としておもに自動車航空機を動かす石油燃料代替物として注目されている。2016年9月にはICAO総会にて航空向けCO2排出量の削減に関する枠組みで合意がなされ、バイオ燃料への注目が集まってきている。

種類

ガソリン代替オットー機関用燃料

バイオマスエタノール

トウモロコシ
ブラジル、サンパウロの給油所。左奥(A)はエタノール100%燃料、右手前(G)はガソリン
詳細は「バイオマスエタノール」および「アルコール燃料」を参照

ガソリンの代わりに、トウモロコシサトウキビと言った安い穀物発酵・濾過してアルコール(エタノール)を作り出し、乗用車・小型商用車用のガソリンを代替するバイオマスアルコール燃料として利用する。

穀物・廃糖蜜をアルコール発酵させて醸造する在来法と、食料にならない廃材/乾燥地生育植物であるサボテン・牧草・藁・トウモロコシ茎・間伐材セルロースを熱や真菌で分解してからコリノ菌・酵母で醸造する第二世代セルロースエタノールがある。在来法は食料との競合問題がでているために、食料と競合しないセルロースエタノールの経済的生産法の開発が急がれている。最近RITEHONDAが、セルロース法の大幅なコストダウンを可能とするRITE-HONDA法を開発し、出光興産三菱商事が合弁で大型プラントを立ち上げる計画がある。

バイオマスアルコール燃料は、化石燃料であるガソリンより出力は劣るものの、向き不向きこそあれど、大抵の穀物は原料に出来るために原料を選ばないこと、安い穀物や、穀物の搾りかす(従来の産業廃棄物のことが多い)を使うことで、コストが抑えられること、硫黄酸化物窒素酸化物の排出が極めて少ないこと、植物原料の燃料なので新たなCO2を作り出さないこと(カーボンニュートラル)などの長所がある。

アルコール燃料は、自動車の初期の時代から使われていた。第二次世界大戦末期、日本ではビール工場の全てを軍事用(飛行機・自動車用)として、アルコール燃料生産用に改造することに着手していたといわれる。石油が低価格で安定供給されるようになってからは注目されない燃料となっていた。しかし、1970年(昭和45年)のオイルショック以降、再びメタノールやエタノールといったアルコール燃料(バイオマス燃料)に注目が集まった。ブラジルでの実用化が有名だが、アメリカ合衆国でも、自動車燃料に10 %のアルコール燃料を含んでいるもの(E10 gas)が標準となっており、Gasoholガソホール/ガソール)と呼ばれることもある。

日本でも経済産業省が取り組みを始めた[2]。2007年時点では、廃却処理に苦労しているサトウキビやサトウダイコンの搾りかす(バガス)を使ったプラントでの試験を行なう予定。そのほかでは、材木の廃材や雑草を原料とする方法など、できるだけ食料を使わない方向で研究が進められている。2007年4月27日よりバイオエタノールを含んだガソリンの試験販売が開始されており、ガソリン価格の高騰、地球温暖化への関心の高まりを受け注目されている。バイオ燃料E85(ガソリンにエタノールを85%混ぜた燃料:IPSJ)は、通常のガソリンよりもCO2の排出が70%少ない。バイオ燃料が利用できるフレックス燃料車が広く普及しているブラジルで2007年5月、トヨタ自動車もバイオ燃料の使用が可能な自動車を発売した[3]

ETBE

DMF

詳細は「2,5-ジメチルフラン」を参照
フルクトースやグルコースから製造する。エタノールよりもエネルギー密度が高く、水とも混じらず化学的にも安定。

軽油代替ディーゼルエンジン用燃料

詳細は「バイオディーゼル」を参照

大型のバス・トラック建設機械・船舶・軍用車両用の軽油代替燃料である。ガソリン代替燃料が農産物/農林廃棄物のアルコール発酵を利用しているのに対して、バイオディーゼル燃料(BDF/BioDieselFuel)は一般の動植物油脂をそのままメタノール処理または水素化分解して製造する。

第一世代のBDFは植物油をアルコール処理してグリセリンを除去した燃料で、欧州では菜種BDFを軽油に5%前後混入して使用する例がある。日本で最近見られる廃食用油ディーゼル燃料も第一世代に属する。第一世代BDFは100%で使用した場合、燃焼力の強い触媒で排ガス処理をしないと粒子状未燃物が出やすいほか、コモンレールディーゼルの高圧噴射との相性の問題もあり、菜種/大豆油の場合は酸化しやすく、パーム油は低温固化しやすく、魚油スラッジでエンジン焼き付きが出やすいなどの問題がある。

第二世代のBHF(BioHydrocracking Fuel)とは、新日本石油が減圧軽油水素化分解装置を使って動植物油を分解するプロセスを試験して得られた、GTL同等の高品質のディーゼル燃料を指す。燃料中の酸素分が除去されて未燃の問題が、ワックスが分解されて固化の問題が改善するほか、グリセリンが分解されてグリセリンの廃棄問題が解決して、歩留まりも改善する。ただし水素化分解装置は、石油精製残渣油水素化分解装置の転用が利くものの、大規模な設備投資を必要とする。なお、船舶用エンジンでは元からA重油など低級な燃料油が使われていた事もあり、漁船用に魚油の生焚きも検討されている。

ジェット燃料/軽油代替ガスタービン用燃料

詳細は「持続可能な航空燃料」および「航空バイオ燃料」を参照

航空機用ジェット燃料、軍艦/戦車用ガスタービン燃料、コジェネレーション用マイクロガスタービン燃料として灯油、ジェット燃料、軽油を代替する。航空機用燃料としては1kgあたりの発熱量が高いことが絶対条件で、アルコールは発熱量が低いため使えず、動植物油かGTLが考えられている。陸海軍用はkg発熱量はそれ程重視されないが、戦闘中に引火しない事が条件のため、やはりアルコールは不適格と考えられている。

ヴァージン・アトランティック航空ココナツ油等を、ニュージーランド航空ナンヨウアブラギリ油を航空燃料の混和材として使用する[4]試験を開始した。

2009年1月JALが747の4基のエンジンの内、1基の燃料に従来の燃料50%にバイオ燃料50%を使用した「JALバイオ・フライト」として空のエコ活動を実施した[5]。ただし、JALは経営再建と効率化推進のため、2011年03月に全ての747を引退させた[6]

第二世代バイオ燃料

詳細は「第二世代バイオ燃料」を参照
第二世代バイオ燃料の原料であるバガス(サトウキビの絞りカス。非食用)

第一世代バイオ燃料ではサトウキビやトウモロコシを原料としてバイオエタノールを製造していたが、これらの穀物の栽培により、飼料用穀物の作付面積が減り、穀物相場が高騰していた。第二世代バイオ燃料では藻類等のバイオマスや古紙・古着[7]、おが屑や牛糞などの廃棄物に含まれる有機物を分解することによってバイオ燃料を製造する。そのため、資源的な制約が無く、需要が増えても穀物相場には影響を与えにくいが、その反面、収率が低く、原材料は安いものの、熱量あたりの製造費用が高くなる可能性がある[8][9][10][11][12]。2013年以降、各地でプラントが建設されつつあるが、セルロースの発酵のために超臨界水を使用する[13][14][15][16]など、ハードルが高い事が普及の妨げになっており、近年の原油相場の下落により、滞っている。

日本国内ではおからを原料にしたバイオエタノール精製への取り組みも行われており、静岡油化工業株式会社は、2008年3月から、現在産業廃棄物として処理されているおからを再利用したバイオ燃料の製造を開始している[17][18]

セルロース細胞壁の分解は熱と化学処理を伴い、従来難しい問題であった[注釈 2]。またセルラーゼで分解することも実施されていたが、前処理に手間がかかり大変であった[10]メリーランド大学カレッジパーク校のSteve Hutcheson はチェサピーク湾の沼地で発見されたバクテリア(サッカロファガス デグラダンス(英語版))が強力なセルロース細胞壁の分解能を有する事を突き止めた[19][10]。Zymetis社ではさらに効率よく糖に変更するために遺伝子を組み換えて、72時間で1トンのセルロースバイオマスを糖に変換できる事を実証した[20][10]

また、シロアリ消化器官内の共生菌によるセルロース分解プロセスがバイオマスエタノールの製造に役立つ事が期待され、琉球大学理化学研究所等で研究が進められる[21][22][23][24][25][26][27][28]

また、世界中の池や湖などに生息し、自ら油を生成する藻の一種「ボトリオコッカス」を培養、抽出した油をバイオ燃料とする研究も行われている[29]。同じく藻のオーランチオキトリウムの研究も盛んになっている。株式会社ユーグレナ (企業)は同じく藻のミドリムシから採れるバイオ燃料を使って実用化を2020年までに目指している。ミドリムシは好気的条件下では多糖で楕円形や円形の板状の結晶構造を作るパラミロンを貯蔵する。嫌気的条件下に置くとワックスエステル発酵によりパラミロンがミリスチルミリステートを主成分とするワックスエステルを生成する。倍加時間は約12時間であり、ユーグレナ細胞自体が大きいため単位時間あたりのバイオマス生産量が大きいことがバイオ燃料源としてミドリムシが着目されているおもな理由だ。その他、40%の高濃度二酸化炭素条件下でも培養可能な炭酸ガス耐性や放射性物質への高いストレス耐性を持つこと、pH3の性培養での培養化が可能であることなどの特徴を持っている。[30][31] 生成されたワックスエステルから作られる燃料は低温でも固まりにくい性質を持っているため、ジェット燃料の規格に適している。[32] 横浜市にバイオジェット燃料製造実証設備を建設し2019年から商用フライト用のバイオジェット燃料を生産する計画であるとしている[33]。 ユーグレナ社はエアロジーラボと共同で沖縄県竹富島石垣島の間でミドリムシ由来のバイオ燃料を使用したドローンの実証実験を行った。ドローンは約5.5kmの距離を高度100mで約15分間飛行し、最大飛行時間は150分で最大重量は4kgの荷物運搬が可能である。[34]

下水処理やリンなどの資源回収等の付加価値をつけることで見かけ上のコストを削減する方法も検討されている。[35]

バイオガス

詳細は「バイオガス」を参照

メタン菌による嫌気発酵により有機物を分解してメタンガスを生成する。おもに下水や生ごみなど、おもに廃棄物が原料となるのでバイオエタノール等の作物を原料として使用するバイオ燃料よりも資源の制約が少なく、既存の処理施設を改造するなど、比較的少ない投資で実現可能である。また、下水処理施設等で生成されるメタンガスは地球温暖化の原因ともなっており、有効利用することによって一石二鳥の効果が見込まれる。

バイオ水素

バイオ水素は水素生産菌光合成細菌によって生成されるバイオガスである[36][37][38][39]。シロアリの消化器官内にいる共生菌の中には水素を生成する菌がいる事が確認されている[40]

バイオコークス

詳細は「バイオコークス」を参照

植物由来のあらゆる廃材を高温高圧で石炭に似た物質に変化させ、固形燃料として利用する。発酵を伴わず製造時の廃材のエネルギー損失がほぼ0で、原材料と比べ体積が5分の1以下になり、化学的に安定しているなど様々な利点がある。コークスの代替として既に実証段階に入っている。

微細藻燃料

培養される藻類
詳細は「微細藻燃料」および「フォトバイオリアクター」を参照

課題

バイオ燃料が普及する、あるいは増産するに当たり、以下の課題が存在している。

  • 上記の通り、バイオ燃料は植物を利用する(有力なのがサトウキビ、小麦、トウモロコシ等である)。大量に増産するには当然ながら作物が大量に必要となるが、特に政策などで推奨するなどしない限り、作物の耕作面積が急速に増えることはありえない。生産量が上がっていない状態で需要だけが伸びることにより、穀物の値段の高騰を引き起こしており、供給が不足するのではないかという懸念がある。また、バイオ燃料に使用される作物への転作が行われることで、バイオ燃料としては不向きな作物も高騰、不足に陥る可能性がある。特に日本の場合、食料自給率は40%程度(カロリーベース)であり、燃料に回す分があるのかという指摘もある。これらにより食用作物以外での生産が望まれ、第二世代バイオ燃料が開発されている。
  • 現在のところ、生産コストがガソリンのそれよりも幾分高く、日本の税制上、ガソリンと同じ扱いを受けるため、販売価格が高くなってしまう。2007年4月からの試験販売では、ガソリンとの差額分を経済産業省石油連盟が負担している。
  • バイオ燃料そのものはCO2排出量は減る[注釈 1]と言われているが、生産プラントの建設や、生産、輸送(2007年7月現在、日本で販売されているバイオ燃料はフランスから輸入されている)の各段階でどれほど燃料が消費され、CO2が排出されるか、実際に大量に生産を始めてみなければ分からない。プラント建設、あるいはバイオ燃料の元となる穀物を栽培する用地確保のために森林を伐採するなど、生産から使用までトータルで計ると環境に悪影響を及ぼすとする意見もある。ただし穀物用の畑については現在各地で農家の引退や生産者の不足などを理由に土地が余っている傾向にあり、宮城県登米市ではバイオ燃料用に休耕田で多収穫米試験栽培が始まっており、コストダウンが最大の課題だという[41][42]
  • バイオ燃料はその特性上、熱に弱く、一定温度以上の場所に置いておくと酸化されてしまう性質がある。ゆえに保存場所や容器等を選ぶ側面があるため、自動車や飛行機等の燃料として利用する場合、燃料タンクの改良が必要になる可能性もある。これらの問題もバイオ燃料の生産コストを引き上げる要因となっており、大量生産に繋げるためにはハード面の技術革新も同時並行で進める必要がある。また将来的に採算性がとれるかどうかは実際にやってみないことには分からないため、進化した先の未来像を予測することは困難である。
  • 一般の燃料に比べ亜酸化窒素(N2O)の放出量が2倍である。N2OCO2の約310倍の温室効果を持つため、地球温暖化を防止するどころか、かえって地球温暖化を促進させるのではないかとパウル・クルッツェン博士などが指摘している[43][44]
  • 地球温暖化は複数種の温室効果ガスが引き起こしているという面がある。そのため、CO2だけを削減したとしても結果的にそれが問題の解決に繋がるかと言えば、必ずしもそうとは言えない実情がある。よって、電気自動車やバイオ燃料に頼るだけでなく、総合的な温室効果ガスの削減が実現できなければ、地球温暖化問題の根本的な解決に繋がらない恐れがある。

脚注

[脚注の使い方]

注釈

  1. ^ a b あくまで理論上であるが、植物が取り込んだCO2を燃料にして排出させているため、排出量を差し引き0とみなしてよいとされる
  2. ^ 超臨界水を使用したりして分解していた

出典

  1. ^ バイオマス燃料製造|再エネとは|なっとく!再生可能エネルギー
  2. ^ 沖縄県伊江村におけるサトウキビ由来バイオマスエタノールの製造・利用に関する実証事業の開始について - 経済産業省報道発表 2005年8月4日
  3. ^ 「トヨタ、ブラジルでFFVを販売」 トヨタ自動車、2007年5月23日。
  4. ^ 世界初、第2世代バイオ燃料によるテスト飛行実施 (2008年11月13日、ニュージーランド航空)
  5. ^ JAL報道発表
  6. ^ 記念フライト案内
  7. ^ バイオ航空燃料開発、競争一段と ミドリムシや古着も 日本経済新聞 記事:2018/11/
  8. ^ 第二世代バイオ燃料の可能性
  9. ^ バイオエタノール「第2世代」元年 世界のVB、脱食糧原料へ
  10. ^ a b c d セルロースを分解しディーゼル、アルコール等を作る新しい微生物
  11. ^ 正念場を迎えた米国の第二世代バイオエタノール(2)
  12. ^ 食料と競合しないバイオ燃料
  13. ^ 亜臨界・超臨界水によるバイオマス廃棄物の有効利用技術の開発
  14. ^ 木質系バイオマス資源の超臨界水処理による石油代替エネルギーの獲得
  15. ^ 超臨界水法によるリグノセルロースからのバイオエタノール生産
  16. ^ 亜臨界水・超臨界水を用いたバイオマスの資源化技術が実用化へ
  17. ^ 「おから使いバイオ燃料製造 静岡油化工業」 中日新聞、2007年12月8日
  18. ^ 事業案内 エネルギー化再生事業 静岡油化工業株式会社
  19. ^ UM Scientists Find Key to Low-Cost Ethanol in Chesapeake Bay
  20. ^ セルロース分解細菌「Saccharophagus dengradans」の パイロット試験
  21. ^ シロアリによるバイオエタノール製造に弾み
  22. ^ シロアリがエタノール生産の救世主に? 代替燃料技術の現在
  23. ^ シロアリの腸からバイオ燃料生産効率を高める新酵素を発見
  24. ^ 国エネルギー省(DOE: Department of Energy)の共同ゲノム研究所
  25. ^ “廃材をバイオ燃料に”. 沖縄タイムス (沖縄: 沖縄タイムス): pp. 1面. (2008年7月3日) 
  26. ^ シロアリの新しい利用法
  27. ^ シロアリ腸内共生系の高効率木質バイオマス糖化酵素を網羅的に解析
  28. ^ バイオエネルギー生産のためのシロアリ共生系高度利用技術の基盤的研究
  29. ^ 「藻からバイオ燃料を抽出/新たなエネルギー源に期待」Web東奥、2008年2月26日
  30. ^ [岡田茂ほか『藻類オイル開発研究の最前線ー微細藻類由来バイオ燃料の生産技術研究』エヌ・ティー・エス、2013年、p95-p99]
  31. ^ [井上勲『藻類30億年の自然史 第二版 藻類からみる生物進化・地球・環境』東海大学出版会、2007年、第11章p387]
  32. ^ [1]、近畿大学農学部・大学院農学研究科
  33. ^ ユーグレナ、バイオジェット燃料の実証設備を6月着工 日本経済新聞、2017年2月10日
  34. ^ 沖縄で実験、『日経新聞』2021年3月16日
  35. ^ “福島藻類プロジェクトから見えてきた燃料生産シナリオ - 国立国会図書館デジタルコレクション”. dl.ndl.go.jp. 2021年6月28日閲覧。
  36. ^ 微生物を用いた水素生産
  37. ^ 超好熱菌による廃棄バイオマスからの連続水素生産
  38. ^ 微生物による水素生産とその回収方法に関する研究
  39. ^ 微生物による有機資源からの発酵水素生産
  40. ^ シロアリは水素を作る -オカシなバイキン-
  41. ^ 「実るか“バイオ燃料米” 登米で試験栽培始まる」 河北新報、2007年5月15日。
  42. ^ 「“休耕田”でコメを作れ〜農業再生へ チャンスを生かせるか〜」『クローズアップ現代』2007年5月15日、NHK
  43. ^ バイオ燃料は地球温暖化防止には貢献しない、ノーベル賞化学者が警告
  44. ^ Biofuels could boost global warming, finds study (21 September 2007)英語

関連項目

典拠管理データベース: 国立図書館 ウィキデータを編集
  • フランス
  • BnF data
  • ドイツ
  • イスラエル
  • アメリカ
  • ラトビア
  • 日本
  • チェコ
原因
開発
農耕(農業)
畜産
インフラストラクチャー
資源採掘
燃料
暖房
木製品
火災
環境汚染
鳥獣による食害
影響
各地の森林破壊
対策
国際協定
非木質エネルギー
森林保護
森林の種類
その他
カテゴリ カテゴリ
 
環境問題の基礎
概念
環境倫理学
責任と権利
対策
緑の党
環境学
 
人類と環境の歴史
環境問題の歴史
国際合意・声明
 
環境問題の一覧と概要
水質汚染
大気汚染
土地の問題
生活環境問題
ごみ廃棄物
気候変動
生態系問題
その他
 
理念と定義
人口
消費
食料と水
エネルギーと資源
生物多様性
活動・分野
投資
  • Category:環境
  • Category:環境問題
  • Portal:環境
方式
発電機使用
熱機関
による発電
火力発電 (発電所)
非火力発電
その他
水力発電
海洋発電
風力発電
その他
発電機不使用
燃料
化石燃料
バイオマス
核燃料
その他
発電機
発電所
日本
その他
ポータル Portal:エネルギー・カテゴリ カテゴリ
概念
  • 自動発電制御(英語版)
  • 逆給電(英語版)
  • ベースロード発電所
  • 需要率
  • ドループ速度制御(英語版)
  • メリットオーダー(英語版)
  • 電力
  • エネルギー需要管理(英語版)
  • エネルギー収支比
  • 電気事故
  • 家庭用エネルギー貯蔵(英語版)
  • グリッドエネルギー貯蔵(英語版)
  • グリッドコード(英語版)
  • 短絡率(英語版)
  • 負荷追従型発電装置(英語版)
  • メリットオーダー(英語版)
  • 定格容量(英語版)
  • ピーク需要(英語版)
  • 力率
  • 電力品質(英語版)
  • パワーフロー研究(英語版)
  • リパワー(英語版)
  • 商用電源周波数
  • 可変型再生可能エネルギー(英語版)
  • ビークル・トゥ・グリッド(英語版)
エネルギー源
再生不可能
再生可能
発電所における技術
送電 および 配電
故障モード
  • 停電 (輪番停電)
  • ブラウンアウト (電気)(英語版)
  • ブラックスタート(英語版)
  • カスケード障害(英語版)
保護装置
経済 および 政策
統計 および 生産
Categories
配電
発電所技術
再生可能エネルギー
Portals
エネルギー
自動車用燃料
主な燃料
その他燃料・エネルギー
関連項目
カテゴリ カテゴリ
自動車設計
分類
サイズ別
カスタム
ラグジュアリー
  • コンパクトエグゼクティブカー(英語版)
  • エグゼクティブカー(英語版)
  • パーソナルラグジュアリーカー(英語版)
ミニバン / MPV
SUV
  • コンパクトスポーツユーティリティビークル(英語版)
  • クロスオーバー (CUV)
  • ミニSUV(英語版)
  • クーペSUV(英語版)
スポーツ
その他
ボディスタイル
特殊車両
地上推進(英語版)
ドライブホイール(英語版)
エンジン位置
レイアウト
(エンジン / ドライブ)
エンジン形式
(内燃機関)
  • ポータルポータル
    • 自動車
  • カテゴリカテゴリ
    • 自動車
新技術(英語版)
分野
エネルギー
生産
貯蔵
その他
トピック
  • ポータル ポータル
    • 技術と産業
  • カテゴリ カテゴリ
ポータル 自動車 / プロジェクト 乗用車 / プロジェクト 自動車
   
    • 自動車の歴史
    • モータースポーツ
    • 自動車画像
    • 自動車関連のスタブ項目